【題目】某種產(chǎn)品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等極如下表:
質量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產(chǎn)品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
【答案】(1)見解析;(2);(3)17.6
【解析】試題分析:(1)根據(jù)頻率分布直方圖,一、二等品所占比例的估計值為
,可做出判斷.
(2)由頻率分布直方圖的頻率分布可知8件產(chǎn)品中,一等品3件,二等品4件,三等品1件,分類討論各種情況可得.
(3)算出“質量提升月”活動前,后產(chǎn)品質量指標值為,可得質量指標值的均值比活動前大約提升了17.6
試題解析:(1)根據(jù)抽樣調(diào)查數(shù)據(jù),一、二等品所占比例的估計值為,由于該估計值小于0.92,故不能認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定.
(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5、0.125,故在樣本中用分層抽樣方法抽取的8件產(chǎn)品中,一等品3件,二等品4件,三等品1件,再從這8件產(chǎn)品中隨機抽取4件,一、二、三等品都有的情況有2種:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.
(3)“質量提升月”活動前,該企業(yè)這種產(chǎn)品的質量指標值的均值約為
“質量提升月”活動后,產(chǎn)品質量指標值近似滿足
,則
.
所以,“質量提升月”活動后的質量指標值的均值比活動前大約提升了17.6
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a= ,sinB+sinC=6
sinBsinC,則△ABC的面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體中,四邊形
是菱形,
,
相交于
,
,點
在平面
上的射影恰好是線段
的中點.
(Ⅰ)求證: 平面
;
(Ⅱ)若直線與平面
所成的角為
,求平面
與平面
所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(1,2),
=(cosα,sinα),設
=
﹣t
(t為實數(shù)).
(1)t=1 時,若 ∥
,求2cos2α﹣sin2α的值;
(2)若α= ,求|
|的最小值,并求出此時向量
在
方向上的投影.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(
)的離心率為
,
分別是它的左、右焦點,且存在直線
,使
關于
的對稱點恰好是圓
(
)的一條直線的兩個端點.
(1)求橢圓的方程;
(2)設直線與拋物線
(
)相交于
兩點,射線
,
與橢圓
分別相交于點
,試探究:是否存在數(shù)集
,當且僅當
時,總存在
,使點
在以線段
為直徑的圓內(nèi)?若存在,求出數(shù)集
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},滿足a1=1, ,n∈N* . (Ⅰ)求證:數(shù)列
為等差數(shù)列;
(Ⅱ)設 ,求T2n .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動點,AB∥OQ,OP與AB交于點B,AC∥OP,OQ與AC交于點C.
(1)當θ=時,求點A的位置,使矩形ABOC的面積最大,并求出這個最大面積;
(2)當θ=時,求點A的位置,使平行四邊形ABOC的面積最大,并求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(sin
,sin
),
=(cos
,cos
),且向量
與向量
共線.
(1)求證:sin( ﹣
)=0;
(2)若記函數(shù)f(x)=sin( ﹣
),求函數(shù)f(x)的對稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f(
)=
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com