日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】是否存在a,b,c使等式( 2+( 2+( 2+…+( 2= 對(duì)一切n∈N*都成立若不存在,說(shuō)明理由;若存在,用數(shù)學(xué)歸納法證明你的結(jié)論.

          【答案】解:取n=1,2,3可得 解得:a= ,b= ,c= . 下面用數(shù)學(xué)歸納法證明( 2+( 2+( 2+…+( 2= =
          即證12+22+…+n2= n(n+1)(2n+1),
          ①n=1時(shí),左邊=1,右邊=1,∴等式成立;
          ②假設(shè)n=k時(shí)等式成立,即12+22+…+k2= k(k+1)(2k+1)成立,
          則當(dāng)n=k+1時(shí),等式左邊=12+22+…+k2+(k+1)2 k(k+1)(2k+1)+(k+1)2= [k(k+1)(2k+1)+6(k+1)2]= (k+1)(2k2+7k+6)= (k+1)(k+2)(2k+3),
          ∴當(dāng)n=k+1時(shí)等式成立;
          由數(shù)學(xué)歸納法,綜合①②當(dāng)n∈N*等式成立,
          故存在a= ,b= ,c= 使已知等式成立
          【解析】分別取n=1,2,3,得到關(guān)于a,b,c的方程組解得即可,先根據(jù)當(dāng)n=1時(shí),把n=1代入求值等式成立;再假設(shè)n=k時(shí)關(guān)系成立,利用變形可得n=k+1時(shí)關(guān)系也成立,綜合得到對(duì)于任意n∈N*時(shí)都成立
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)學(xué)歸納法的定義(數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點(diǎn)個(gè)數(shù)是(
          A.5
          B.6
          C.7
          D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

          產(chǎn)量x(千件)

          2

          3

          5

          6

          成本y(萬(wàn)元)

          7

          8

          9

          12

          (Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
          (Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)求函數(shù)f(x)的零點(diǎn);
          (2)若實(shí)數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】

          將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.

          Ⅰ)寫(xiě)出C的參數(shù)方程;

          設(shè)直線C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩組各有三名同學(xué),他們?cè)谝淮螠y(cè)驗(yàn)中的成績(jī)的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機(jī)挑選一名同學(xué),則這兩名同學(xué)成績(jī)相同的概率是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ex , g(x)=ln 的圖象分別與直線y=m交于A,B兩點(diǎn),則|AB|的最小值為(
          A.2
          B.2+ln2
          C.e2
          D.2e﹣ln

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
          (1)若a= ,求A∩B.
          (2)若A∩B=,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,滿足x2+y2≤1,x≥0,y≥0的點(diǎn)P(x,y)的集合對(duì)應(yīng)的平面圖形的面積為 ;類似的,在空間直角坐標(biāo)系O﹣xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點(diǎn)P(x,y,z)的集合對(duì)應(yīng)的空間幾何體的體積為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案