日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

          產(chǎn)量x(千件)

          2

          3

          5

          6

          成本y(萬元)

          7

          8

          9

          12

          (Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
          (Ⅱ)預計產(chǎn)量為8千件時的成本.

          【答案】解:(Ⅰ)根據(jù)表中數(shù)據(jù),計算 = ×(2+3+4+5)=4, = ×(7+8+9+12)=9,
          = = =1.1,
          = =9﹣1.1×4=4.6,
          則回歸直線的方程為 =1.1x+4.6;
          (Ⅱ)當x=8時, =1.1×8+4.6=13.4,
          預計產(chǎn)量為8千件時的成本為13.4萬元
          【解析】(Ⅰ)根據(jù)表中數(shù)據(jù)計算 、 ,求出回歸系數(shù),寫出回歸直線的方程;(Ⅱ)利用回歸方程計算x=8時 的值即可.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),討論F(x)在(0,+∞)內的單調性并求極值;
          (Ⅱ)求證:當x>1時,恒有x>ln2x﹣2alnx+1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在△ABC中,D、F分別是BC、AC的中點, = , = , =
          (1)用 、 表示向量 、 、 ;
          (2)求證:B、E、F三點共線.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知奇函數(shù)f(x)在(﹣∞,0)∪(0,+∞)上有定義,在(0,+∞)上是增函數(shù),f(1)=0,又知函數(shù)g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】給出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的個數(shù)是(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),

          求函數(shù)的單調區(qū)間;

          時,若函數(shù)在區(qū)間內單調遞減,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知為等差數(shù)列,前n項和為 是首項為2的等比數(shù)列,且公比大于0, ,, .

          (Ⅰ)求的通項公式;

          (Ⅱ)求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】是否存在a,b,c使等式( 2+( 2+( 2+…+( 2= 對一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學歸納法證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若f(x)是定義在R上的可導函數(shù),且滿足(x﹣1)f′(x)≥0,則必有(
          A.f(0)+f(2)<2f(1)
          B.f(0)+f(2)>2f(1)
          C.f(0)+f(2)≤2f(1)
          D.f(0)+f(2)≥2f(1)

          查看答案和解析>>

          同步練習冊答案