【題目】據(jù)史載知,新華網(wǎng):北京2008年11月9日電,國務(wù)院總理溫家寶主持召開國務(wù)院常務(wù)會議.研究部署進一步擴大內(nèi)需促進經(jīng)濟平穩(wěn)較快增長的措施,以應(yīng)對日趨嚴(yán)峻的全球性世界經(jīng)濟金融危機,在提高城鄉(xiāng)居民特別是低收入人群的收入水平政策措施的刺激下,某零售店當(dāng)時近5個月的銷售額和利潤額數(shù)據(jù)統(tǒng)計如下表:
月份 | 2 | 3 | 4 | 5 | 6 |
銷售額x/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額y/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)若x與y之間是線性相關(guān)關(guān)系,求利潤額y關(guān)于銷售額x的線性回歸方程;
(2)若9月份的銷售額為8千萬元,試?yán)茫?/span>1)的結(jié)論估計該零售店9月份的利潤額.
參考公式:,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中(圖1),
,
,
,過
、
分別作
的垂線,垂足分別為
、
,且
,將梯形
沿
、
同側(cè)折起,使得
,且
,得空間幾何體
(圖2).直線
與平面
所成角的正切值是
.
(1)求證:平面
;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)軸、
軸正方向的單位向量分別為
,坐標(biāo)平面上的點
滿足條件:
,
.
(1)若數(shù)列的前
項和為
,且
,求數(shù)列
的通項公式.
(2)求向量的坐標(biāo),若
的面積
構(gòu)成數(shù)列
,寫出數(shù)列
的通項公式.
(3)若,指出
為何值時,
取得最大值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓
是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓
的長軸長是4,橢圓
長軸長是2,點
,
分別是橢圓
的左焦點與右焦點.
(1)求橢圓,
的方程;
(2)過的直線交橢圓
于點
,
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運用統(tǒng)計學(xué)知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某商品每件的生產(chǎn)成本(元)與銷售價格
(元)具有線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如表所示:
| 5 | 6 | 7 | 8 |
| 15 | 17 | 21 | 27 |
(1)求出關(guān)于
的線性回歸方程
;
(2)若該商品的月銷售量(千件)與生產(chǎn)成本
(元)的關(guān)系為
,
,根據(jù)(1)中求出的線性回歸方程,預(yù)測當(dāng)
為何值時,該商品的月銷售額最大.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底,
為常數(shù),
)有兩個極值點
,且
.
(Ⅰ)求的取值范圍;
(Ⅱ)若恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線E:
的左、右焦點,P是雙曲線上一點,
到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)
時,
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com