日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .(本小題滿分12分)
          已知函數(shù)f(x)=ln+mx2(m∈R)
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點(diǎn),且a>b>0, 為f(x)的導(dǎo)函數(shù),求證:
          (III)求證
          (1)
          上單調(diào)遞增,在上單調(diào)遞減.
          (2)構(gòu)造函數(shù)利用單調(diào)性來證明不等式成立。
          (3)在第二問的基礎(chǔ)上,進(jìn)行適當(dāng)?shù)姆趴s得到證明。

          試題分析:解:(Ⅰ)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003503924470.png" style="vertical-align:middle;" />,

          時(shí),>0, 上單調(diào)遞增;
          時(shí),<0, 上單調(diào)遞減.
          綜上所述:
          上單調(diào)遞增,在上單調(diào)遞減.…………3分
          (Ⅱ)要證,只需證,令即證
          ,
          因此得證.…………………6分
          要證,只要證,
          ,只要證,

          因此,
          所以得證.………………9分
          另一種的解法:
          =,,
           ,
          所以單調(diào)遞增,

          得證.
          (Ⅲ)由(Ⅱ)知,(),則

          所以.………………12分
          點(diǎn)評(píng):解決該試題的關(guān)鍵是利用導(dǎo)數(shù)的正負(fù)來求解函數(shù)的單調(diào)區(qū)間,進(jìn)而確定出最值,同時(shí)利用構(gòu)造函數(shù)的思想,分離參數(shù)來求解函數(shù)的最值,解決不等式的恒成立問題,同時(shí)要對(duì)于不等式的證明,要采用適當(dāng)?shù)姆趴s來完成,屬于難度試題。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=2x--aln(x+1),a∈R.
          (1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)在(1,4)上是減函數(shù),則實(shí)數(shù)的取值范圍是(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)為常數(shù))在上有最大值3,那么此函數(shù)在上的最小值為(    )
          A.-29B.-37C.-5D.-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          設(shè)函數(shù)
          (Ⅰ)若,求的單調(diào)區(qū)間;
          (Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若曲線在點(diǎn)處與直線相切,則           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知命題p:函數(shù)R上的減函數(shù);命題q:在時(shí),不等式恒成立,若pq是真命題,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (滿分12分)設(shè)函數(shù)。
          (Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實(shí)數(shù)的最小值;
          (Ⅱ)若函數(shù)在區(qū)間上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分16分)設(shè)
          (1)請(qǐng)寫出的表達(dá)式(不需證明);
          (2)求的極值
          (3)設(shè)的最大值為,的最小值為,求的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案