日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè) 
          (1)若是函數(shù)的極大值點,求的取值范圍;
          (2)當(dāng)時,若在上至少存在一點,使成立,求的取值范圍.

          (1);  (2) .

          解析試題分析:(1)對函數(shù)求導(dǎo),
          求出零點,分析單調(diào)性,找出極大值點與1的關(guān)系,進行計算;
          (2)原問題轉(zhuǎn)化為當(dāng)時, ,利用第一問求出最值,解不等式.
          試題解析:(1)
          當(dāng)時,f(x)在(0,1)遞減,在(1,+)遞增,故f(x)在x=1處取到極小值,不合舍去。
          當(dāng)時,f(x)在(0,a-1)遞增,在(a-1,1)遞減,在(1,+)遞增,故f(x)在x=1處取到極小值,不合舍去。
          當(dāng)時,f(x)在(0,1)和(1,+)均遞增,故f(x)在x=1處沒有極值,不合舍去。
          當(dāng)時,f(x)在(0,1)遞增,在(1,a-1)遞減,在(a-1, +)遞增,故f(x)在x=1處取到極大值,符合題意。
          綜上所述,當(dāng),即時,是函數(shù)的極大值點.     6分 
          (2)在上至少存在一點,使成立,等價于
          當(dāng)時, .由(1)知,①當(dāng),即時,
          函數(shù)上遞減,在上遞增,
          ,解得.由,解得; ②當(dāng),即時,函數(shù)上遞增,在上遞減,
          綜上所述,當(dāng)時,在上至少存在一點,使成立.  13分
          考點:導(dǎo)數(shù)計算,轉(zhuǎn)化與化歸思想.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線
          (1)求曲線在點處的的切線方程;
          (2)過原點作曲線的切線,求切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
          (1)求a,b的值;
          (2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某商場預(yù)計從2013年1月份起的前x個月,顧客對某商品的需求總量p(x)(單位:件)與x的關(guān)系近似的滿足,且)。該商品第x月的進貨單價q(x)(單位:元)與x的近似關(guān)系是

          (1)寫出這種商品2013年第x月的需求量f(x)(單位:件)與x的函數(shù)關(guān)系式;
          (2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2013年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)試判斷函數(shù)的單調(diào)性;
          (2)設(shè),求上的最大值;
          (3)試證明:對,不等式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為-1.
          (1)求的值及函數(shù)的極值;(2)證明:當(dāng)時,;
          (3)證明:對任意給定的正數(shù),總存在,使得當(dāng),恒有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          (1)求函數(shù)的極值;(2)若恒成立,求實數(shù)的值;
          (3)設(shè)有兩個極值點(),求實數(shù)的取值范圍,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知函數(shù)在區(qū)間上恰有一個極值點,則實數(shù)的取值范圍是         

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          函數(shù)上的最大值與最小值的差為          .

          查看答案和解析>>

          同步練習(xí)冊答案