日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)A(0,﹣2),橢圓E: 的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)過點(diǎn)A的動(dòng)直線與橢圓E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求直線l的方程.

          【答案】
          (1)解:設(shè)F(c,0), ,解得 ,又 ,∴a=2,b=1,

          ∴橢圓E: ;


          (2)解:當(dāng)l⊥x軸時(shí),不合題意;

          當(dāng)直線l斜率存在時(shí),設(shè)直線l:y=kx﹣2,P(x1,y1),Q(x2,y2),

          聯(lián)立 ,得(1+4k2)x2﹣16kx+12=0.

          由△=16(4k2﹣3)>0,得 ,即 或k

          ,

          從而

          =

          又點(diǎn)O到直線PQ的距離 ,

          ∴△OPQ的面積 ,

          設(shè) ,則t>0,

          ,當(dāng)且僅當(dāng)t=2,

          時(shí),等號(hào)成立,且△>0.

          此時(shí)


          【解析】(1)設(shè)出F,由直線AF的斜率為 求得c,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;(2)當(dāng)l⊥x軸時(shí),不合題意;當(dāng)直線l斜率存在時(shí),設(shè)直線l:y=kx﹣2,聯(lián)立直線方程和橢圓方程,由判別式大于0求得k的范圍,再由弦長公式求得|PQ|,由點(diǎn)到直線的距離公式求得O到l的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出k值,則直線方程可求.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}滿足a1= ,an+1=a ﹣an+1,則M= + +…+ 的整數(shù)部分是(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從某高中隨機(jī)選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:

          身高x(cm)

          160

          165

          170

          175

          180

          體重y(kg)

          63

          66

          70

          72

          74

          根據(jù)如表可得回歸方程 =0.56x+ ,據(jù)此模型可預(yù)報(bào)身高為172cm的高一男生的體重為(
          A.70.12kg
          B.70.29kg
          C.70.55kg
          D.71.05kg

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a∈R,若x>0時(shí)均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,則a=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

          在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線

          (1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線

          試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

          (2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 上單調(diào)遞增,

          (1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;

          (2)若對(duì)于任意的時(shí),不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)若函數(shù)的圖像在點(diǎn)處有相同的切線,求的值;

          (Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;

          (Ⅲ)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1 , A2 , …,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是(

          A.i<6
          B.i<7
          C.i<8
          D.i<9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N+)是首項(xiàng)為4,公差為2的等差數(shù)列.
          (Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
          (Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng)m= 時(shí),求Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案