日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
          (1)求角A的大小;
          (2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長(zhǎng).

          【答案】
          (1)解:∵ ,

          ∴由正弦定理可得: a2=( b﹣c)b+( c﹣b)c,即2bc= (b2+c2﹣a2),

          ∴由余弦定理可得:cosA= = ,

          ∵A∈(0,π),

          ∴A=


          (2)解:∵由cosB= ,可得sinB= ,

          再由正弦定理可得 ,即 ,

          ∴得b=AC=2.

          ∵△ABC中,由余弦定理可得BC2=AB2+AC2﹣2ABACcos∠A,

          即10=AB2+4﹣2AB2 ,

          求得AB=32.

          △ABD中,由余弦定理可得BD2=AB2+AD2﹣2ABADcos∠A=18+1﹣6 =13,

          ∴BD=


          【解析】(I)由已知,利用正弦定理可得 a2=( b﹣c)b+( c﹣b)c,化簡(jiǎn)可得2bc= (b2+c2﹣a2),再利用余弦定理即可得出cosA,結(jié)合A的范圍即可得解A的值.(Ⅱ)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
          【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(
          A.(﹣2,+∞)
          B.(0,+∞)
          C.(1,+∞)
          D.(4,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】求函數(shù)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ln|x|,g(x)=﹣x2+3,則f(x)g(x)的圖象為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}滿(mǎn)足:a1=1,an+1﹣ansin2θ=sin2θcos2nθ.
          (Ⅰ)當(dāng)θ= 時(shí),求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)在(Ⅰ)的條件下,若數(shù)列{bn}滿(mǎn)足bn=sin ,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:對(duì)任意n∈N* , Sn<3+

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
          (1)求圓C的極坐標(biāo)方程;
          (2)直線(xiàn)l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線(xiàn)OM:θ= 與圓C的交點(diǎn)為O、P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,且滿(mǎn)足(2b﹣a)cosC=ccosA.
          (Ⅰ)求角C的大。
          (Ⅱ)設(shè)y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當(dāng)y取得最大值時(shí)△ABC的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知F1 , F2為雙曲線(xiàn) 的左右焦點(diǎn),過(guò)F1的直線(xiàn)l與圓x2+y2=b2相切于點(diǎn)M,且|MF2|=2|MF1|,則直線(xiàn)l的斜率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案