日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)動點P(x,y)(x≥0)到定點的距離比到y(tǒng)軸的距離大.記點P的軌跡為曲線C.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當M 運動時弦長BD是否為定值?說明理由;
          (Ⅲ)過作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.
          【答案】分析:(1)由動點P(x,y)(x≥0)到定點的距離比到y(tǒng)軸的距離大,知動點P(x,y)為以為焦點,直線為準線的拋物線,由此能求出點P的軌跡方程.
          (2)設(shè)圓心,半徑,圓的方程為.由此能導出當M運動時弦長BD為定值.
          (3)設(shè)過F的直線方程為,G(x1,y1),H(x2,y2)由,得,由此能求出四邊形GRHS的面積的最小值.
          解答:解:(1))∵動點P(x,y)(x≥0)到定點的距離比到y(tǒng)軸的距離大,
          ∴動點P(x,y)為以為焦點,直線為準線的拋物線,
          ∴點P的軌跡方程為y2=2x.
          (2)設(shè)圓心,半徑,
          圓的方程為
          令x=0,得B(0,1+a),D(0,-1+a),
          ∴BD=2
          故弦長BD為定值2.
          (3)設(shè)過F的直線方程為
          G(x1,y1),H(x2,y2),
          ,得,
          由韋達定理得

          同理得RS=2+2k2,
          ∴四邊形GRHS的面積
          故四邊形面GRHS的最小值為8.
          點評:本題考查點的軌跡方程的求法,探索弦長是否為定值,求四邊形面積的最小值.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)設(shè)動點P(x,y)(y≥0)到定點F(0,1)的距離比它到x軸的距離大1,記點P的軌跡為曲線C.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)設(shè)圓M過A(0,2),且圓心M在曲線C上,EG是圓M在x軸上截得的弦,試探究當M運動時,弦長|EG|是否為定值?為什么?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•陜西三模)設(shè)動點P(x,y)(x≥0)到定點F(
          1
          2
          ,0)
          的距離比到y(tǒng)軸的距離大
          1
          2
          .記點P的軌跡為曲線C.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當M 運動時弦長BD是否為定值?說明理由;
          (Ⅲ)過F(
          1
          2
          ,0)
          作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)動點P(x,y)(y≥0)到定點F(0,1)的距離比它到x軸的距離大1,記點P的軌跡為曲線C.
          (1)求點P的軌跡方程;
          (2)若圓心在曲線C上的動圓M過點A(0,2),試證明圓M與x軸必相交,且截x軸所得的弦長為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)動點P(x,y)滿足
          2x+y≤40
          x+2y≤50
          x≥0
          y≥0
          ,則z=5x+2y的最大值是
          100
          100

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)動點P(x,y)在區(qū)域Ω:
          x≥0
          y≥x
          x+y≤4
          上,過點P作直線l,設(shè)直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為

          查看答案和解析>>

          同步練習冊答案