日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)動(dòng)點(diǎn)P(x,y)(y≥0)到定點(diǎn)F(0,1)的距離比它到x軸的距離大1,記點(diǎn)P的軌跡為曲線C.
          (1)求點(diǎn)P的軌跡方程;
          (2)若圓心在曲線C上的動(dòng)圓M過點(diǎn)A(0,2),試證明圓M與x軸必相交,且截x軸所得的弦長為定值.
          分析:(1)由題意知,P的軌跡滿足拋物線的定義,故可求出拋物線的焦點(diǎn),繼而求出拋物線方程.
          (2)待定系數(shù)法設(shè)出圓的方程,設(shè)出圓與x軸的兩個(gè)焦點(diǎn)E,G的坐標(biāo),再根據(jù)圓心在拋物線上,將圓心坐標(biāo)代入拋物線,利用弦長公式及韋達(dá)定理可求結(jié)論.
          解答:解:(1)依題意知,動(dòng)點(diǎn)P到定點(diǎn)F(0,1)的距離等于P到直線y=-1的距離,
          曲線C是以原點(diǎn)為頂點(diǎn),F(xiàn)(0,1)為焦點(diǎn)的拋物線
          p
          2
          =1,∴p=2,
          ∴曲線C方程是x2=4y            …(5分)
          (2)設(shè)圓心為M(a,b),
          ∵圓M過A(0,2),
          ∴圓的方程為 (x-a)2+(y-b)2=a2+(b-2)2
          令y=0得:x2-2ax+4b-4=0
          ∵點(diǎn)M(a,b)在拋物線x2=4y上,
          ∴a2=4b,
          ∴△=4a2-16b+16>0
          ∴圓M與x軸必相交                                    …(9分)
          設(shè)圓M與x軸的兩交點(diǎn)分別為E(x1,0),G(x2,0)
          ∵x1+x2=2a,x1x2=4b-4
          ∴|EG|2=(x1+x22-4x1x2=4a2-16b+16=16
          ∴|EG|=4
          ∴當(dāng)M運(yùn)動(dòng)時(shí),弦長|EG|為定值4 …(13分)
          點(diǎn)評:本題考查圓與拋物線相交關(guān)系的應(yīng)用,考查了圓的定義,拋物線的定義,以及點(diǎn)的軌跡方程的求法,考查運(yùn)算求解能力,中等題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)設(shè)動(dòng)點(diǎn)P(x,y)(y≥0)到定點(diǎn)F(0,1)的距離比它到x軸的距離大1,記點(diǎn)P的軌跡為曲線C.
          (Ⅰ)求點(diǎn)P的軌跡方程;
          (Ⅱ)設(shè)圓M過A(0,2),且圓心M在曲線C上,EG是圓M在x軸上截得的弦,試探究當(dāng)M運(yùn)動(dòng)時(shí),弦長|EG|是否為定值?為什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•陜西三模)設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F(
          1
          2
          ,0)
          的距離比到y(tǒng)軸的距離大
          1
          2
          .記點(diǎn)P的軌跡為曲線C.
          (Ⅰ)求點(diǎn)P的軌跡方程;
          (Ⅱ)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當(dāng)M 運(yùn)動(dòng)時(shí)弦長BD是否為定值?說明理由;
          (Ⅲ)過F(
          1
          2
          ,0)
          作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)動(dòng)點(diǎn)P(x,y)滿足
          2x+y≤40
          x+2y≤50
          x≥0
          y≥0
          ,則z=5x+2y的最大值是
          100
          100

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)動(dòng)點(diǎn)P(x,y)在區(qū)域Ω:
          x≥0
          y≥x
          x+y≤4
          上,過點(diǎn)P作直線l,設(shè)直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為

          查看答案和解析>>

          同步練習(xí)冊答案