【題目】在平面直角坐標系中,已知圓
,圓
.
(1)若過點的直線
被圓
截得的弦長為
,求直線
的方程;
(2)圓是以1為半徑,圓心在圓
:
上移動的動圓 ,若圓
上任意一點
分別作圓
的兩條切線
,切點為
,求
的取值范圍;
(3)若動圓同時平分圓
的周長、圓
的周長,則動圓
是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
【答案】(1)或
(2)
(3)所求的定點坐標為
【解析】
試題分析:(Ⅰ)設(shè)直線l的方程為y=k(+1),根據(jù)直線l被圓C2截得的弦長為,利用勾股定理,求出k,即可求直線l的方程;(Ⅱ)動圓D是圓心在定圓
上移動,半徑為1的圓,由圓的幾何性質(zhì)得,|DC1|-r≤|PC1|≤|DC1|+r,即2≤|PC1|≤4,4≤|PC1|2≤16,利用向量的數(shù)量積公式,即可求
的取值范圍;(Ⅲ)確定動圓圓心C在定直線x+y-3=0上運動,求出動圓C的方程,即可得出結(jié)論.
試題解析:(1)設(shè)直線的方程為
,即
. 因為直線
被圓
截得的弦長為
,而圓
的半徑為1,所以圓心
到
:
的距離為
.化簡,得
,解得
或
.所以直線
的方程為
或
.
(2) 動圓D是圓心在定圓上移動,半徑為1的圓
設(shè),則在
中,
,
有,則
由圓的幾何性質(zhì)得,,即
,
則的最大值為
,最小值為
. 故
(3)設(shè)圓心C(x,y),由題意得CC1=CC2,
即,整理得x+y-3=0,即圓心C在定直線x+y-3=0上運動.
設(shè)C(m,3-m),
則動圓的半徑,
于是動圓C的方程為(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2,
整理得:x2+y2-6y-2-2m(x-y+1)=0.
由,
解得或
,
即所求的定點坐標為
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),
.
(1)若函數(shù)在
處有極值,求函數(shù)
的最大值;
(2)①是否存在實數(shù),使得關(guān)于
的不等式
在
上恒成立?若存在,求出
的取值范圍;若不存在,說明理由;
②證明:不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線上一點
,作兩條直線分別交拋物線于
,
,當
與
的斜率存在且傾斜角互補時:
(Ⅰ)求的值;
(Ⅱ)若直線在
軸上的截距
時,求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
,圓
.
(1)若過點的直線
被圓
截得的弦長為
,求直線
的方程;
(2)圓是以1為半徑,圓心在圓
:
上移動的動圓 ,若圓
上任意一點
分別作圓
的兩條切線
,切點為
,求
的取值范圍;
(3)若動圓同時平分圓
的周長、圓
的周長,則動圓
是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
),其最小正周期為
.
(1)求在區(qū)間
上的減區(qū)間;
(2)將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向右平移
個單位,得到函數(shù)
的圖象,若關(guān)于
的方程
在區(qū)間
上有且只有一個實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log,Sn=b1+b2+…+bn,求使
成立的正整數(shù)n的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題實數(shù)
滿足
(其中
),命題
實數(shù)
滿足
(1)若,且
為真,求實數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓方程+
=1(a>b>0),橢圓上一點到兩焦點的距離和為4,過焦點且垂直于x軸的直線交橢圓于A,B兩點,AB=2.
(1)求橢圓方程;
(2)若M,N是橢圓C上的點,且直線OM與ON的斜率之積為﹣,是否存在動點P(x0,y0),若
=
+2
,有x02+2y02為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,
;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校
的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com