日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】“二萬五千里長征”是1934年10月到1936年10月中國工農(nóng)紅軍進(jìn)行的一次戰(zhàn)略轉(zhuǎn)移,是人類歷史上的偉大奇跡,向世界展示了中國工農(nóng)紅軍的堅強(qiáng)意志,在期間發(fā)生了許多可歌可泣的英雄故事.在中國共產(chǎn)黨建黨周年之際,某中學(xué)組織了“長征英雄事跡我來講”活動,已知該中學(xué)共有高中生名,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為的樣本參加活動,其中高三年級抽了人,高二年級抽了人,則該校高一年級學(xué)生人數(shù)為( )

          A.B.C.D.

          【答案】C

          【解析】

          先計算高一年級抽取的人數(shù),然后計算抽樣比,再計算高一年級的總?cè)藬?shù).

          因為用分層抽樣的方法從某校學(xué)生中抽取一個容量為的樣本,其中高三年級抽人,高二年級抽人,所以高一年級要抽取人,因為該校高中學(xué)共有名學(xué)生,所以各年級抽取的比例是,所以該校高一年級學(xué)生人數(shù)為人,選C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為4正方體中,的中點,,點在正方體表面上移動,且滿足,則點和滿足條件的所有點構(gòu)成的圖形的面積是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是各項均為非零實數(shù)的數(shù)列的前n項和,給出如下兩個命題上:命題p是等差數(shù)列;命題q:等式對任意恒成立,其中k,b是常數(shù).

          1)若pq的充分條件,求k,b的值;

          2)對于(1)中的kb,問p是否為q的必要條件,請說明理由;

          3)若p為真命題,對于給定的正整數(shù)n和正數(shù)M,數(shù)列滿足條件,試求 的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國多數(shù)城市空氣中濃度快速上升,特別是在大氣擴(kuò)散條件不利的情況下,空氣質(zhì)量在短時間內(nèi)會迅速惡化年除夕18時和初一2時,國家環(huán)保部門對8個城市空氣中濃度監(jiān)測的數(shù)據(jù)如表單位:微克立方米

          除夕18濃度

          初一2濃度

          北京

          75

          647

          天津

          66

          400

          石家莊

          89

          375

          廊坊

          102

          399

          太原

          46

          115

          上海

          16

          17

          南京

          35

          44

          杭州

          131

          39

          求這8個城市除夕18時空氣中濃度的平均值;

          環(huán)保部門發(fā)現(xiàn):除夕18時到初一2時空氣中濃度上升不超過100的城市都是禁止燃放煙花爆竹的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹從以上8個城市中隨機(jī)選取3個城市組織專家進(jìn)行調(diào)研,記選到禁止燃放煙花爆竹的城市個數(shù)為X,求隨機(jī)變量y的分布列和數(shù)學(xué)期望;

          2017年除夕18時和初一2時以上8個城市空氣中濃度的方差分別為,比較的大小關(guān)系只需寫出結(jié)果

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx.

          1)求函數(shù)y=fx)的單調(diào)區(qū)間;

          2)若曲線y=fx)與直線ybbR)有3個交點,求實數(shù)b的取值范圍;

          3)過點P(﹣10)可作幾條直線與曲線y=fx)相切?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠(yuǎn),都分為上、中、下三等.于是孫臏給田忌將軍獻(xiàn)策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽,田忌獲勝的概率如下表所示:

          比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

          1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;

          2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000,即勝利者贏得對方1000,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的長軸是短軸的兩倍,以短軸一個頂點和長軸一個頂點為端點的線段作直徑的圓的周長等于,直線l與橢圓C交于兩點,其中直線l不過原點.

          1)求橢圓C的方程;

          2)設(shè)直線的斜率分別為,其中.的面積為S.分別以為直徑的圓的面積依次為,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為調(diào)查學(xué)生喜歡應(yīng)用統(tǒng)計課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:

          喜歡統(tǒng)計課程

          不喜歡統(tǒng)計課程

          男生

          20

          5

          女生

          10

          20

          1判斷是否有995%的把握認(rèn)為喜歡應(yīng)用統(tǒng)計課程與性別有關(guān)?

          2用分層抽樣的方法從喜歡統(tǒng)計課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個樣本,從中任選2人,求恰有1個男生和1個女生的概率

          臨界值參考:

          010

          005

          025

          0010

          0005

          0001

          2706

          3841

          5024

          6635

          7879

          10828

          參考公式:,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從四所高校中選2.

          (Ⅰ)求甲、乙、丙三名同學(xué)都選高校的概率;

          (Ⅱ)若已知甲同學(xué)特別喜歡高校,他必選校,另在三校中再隨機(jī)選1所;而同學(xué)乙和丙對四所高校沒有偏愛,因此他們每人在四所高校中隨機(jī)選2.

          (ⅰ)求甲同學(xué)選高校且乙、丙都未選高校的概率;

          (ⅱ)記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案