日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線與斜率為且過拋物線焦點(diǎn)的直線交于、兩點(diǎn),滿足弦長.

          1)求拋物線的標(biāo)準(zhǔn)方程;

          2)已知為拋物線上任意一點(diǎn),為拋物線內(nèi)一點(diǎn),求的最小值,以及此時(shí)點(diǎn)的坐標(biāo).

          【答案】1;(2的最小值為,此時(shí)點(diǎn)的坐標(biāo)為.

          【解析】

          1)寫出直線的方程,聯(lián)立拋物線方程,運(yùn)用韋達(dá)定理和弦長公式,可得,進(jìn)而得到拋物線的方程;

          2)過作拋物線的準(zhǔn)線的垂線,垂足為,運(yùn)用拋物線的定義和三點(diǎn)共線取得最小值,可得所求的坐標(biāo).

          1)斜率為且過拋物線焦點(diǎn)的直線的方程為

          聯(lián)立拋物線,可得

          設(shè)、,可得,

          由弦長公式可得,可得,

          則拋物線的標(biāo)準(zhǔn)方程為

          2)過作拋物線的準(zhǔn)線的垂線,垂足為,

          由拋物線的定義可得,

          最小值為到準(zhǔn)線的距離,所以

          此時(shí)的縱坐標(biāo)為,代入拋物線方程,可得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論函數(shù)fx)的極值點(diǎn)的個(gè)數(shù);

          2)若fx)有兩個(gè)極值點(diǎn),,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求的單調(diào)區(qū)間;

          (Ⅱ)若對(duì)于任意的為自然對(duì)數(shù)的底數(shù)),恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為: ,直線的參數(shù)方程是為參數(shù), ).

          (1)求曲線的直角坐標(biāo)方程;

          (2)設(shè)直線與曲線交于兩點(diǎn),且線段的中點(diǎn)為,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點(diǎn)在平面上的射影恰好在上.

          (Ⅰ)當(dāng)時(shí),證明:平面平面

          (Ⅱ)若,求平面與平面所成二面角的余弦值的絕對(duì)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過,分別作拋物線的切線,,交于點(diǎn).

          (Ⅰ)求的值;

          (Ⅱ)若,求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)軸的正半軸,且過點(diǎn),過的直線交拋物線于,兩點(diǎn).

          1)求拋物線的方程;

          2)設(shè)直線是拋物線的準(zhǔn)線,求證:以為直徑的圓與直線相切.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運(yùn)動(dòng)之間的聯(lián)系,調(diào)查了50位中老年人每周運(yùn)動(dòng)的總時(shí)長(單位:小時(shí)),將數(shù)據(jù)分成[04),[4,8),[8,14),[14,16),[16,20),[2024]6組進(jìn)行統(tǒng)計(jì),并繪制出如圖所示的柱形圖.

          圖中縱軸的數(shù)字表示對(duì)應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運(yùn)動(dòng)的總時(shí)長少于14小時(shí)為運(yùn)動(dòng)較少.

          每周運(yùn)動(dòng)的總時(shí)長不少于14小時(shí)為運(yùn)動(dòng)較多.

          1)根據(jù)題意,完成下面的2×2列聯(lián)表:

          有腸胃病

          無腸胃病

          總計(jì)

          運(yùn)動(dòng)較多

          運(yùn)動(dòng)較少

          總計(jì)

          2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)?

          附:K2na+b+c+d

          PK2k

          0.0.50

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

          (Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

          (Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.

          【答案】I;(II.

          【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.

          試題解析:(Ⅰ)由,得,即

          所以曲線的極坐標(biāo)方程為

          II)將的參數(shù)方程代入,得

          , 所以,又,

          所以,且,

          所以,

          ,得,所以.

          的取值范圍是.

          型】解答
          結(jié)束】
          23

          【題目】已知、、均為正實(shí)數(shù).

          (Ⅰ)若,求證:

          (Ⅱ)若,求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案