【題目】已知橢圓的右焦點(diǎn)為
,過(guò)
的直線
與
交于
,
兩點(diǎn),點(diǎn)
的坐標(biāo)為
.當(dāng)
軸時(shí),
的面積為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線、
的斜率分別為
、
,證明:
.
【答案】(1);(2)見(jiàn)解析
【解析】
(1)由已知條件得b2=a2﹣1,利用通徑公式得出|AB|的表達(dá)式,再由△ABM的面積得出有關(guān)a的方程,求出a的值,可得出橢圓C的標(biāo)準(zhǔn)方程;
(2)對(duì)直線l與x軸垂直、與y軸垂直以及與斜率存在且不為零三種情況討論.在前兩種情況下可直接進(jìn)行驗(yàn)證;在第三種情況下,設(shè)直線l的方程為y=k(x﹣1)(k≠0),將直線l的方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用斜率公式并代入韋達(dá)定理,通過(guò)化簡(jiǎn)計(jì)算得出結(jié)論成立.
(1)依題意得,即
,
所以當(dāng)時(shí),解得
,當(dāng)
軸時(shí),
,
因?yàn)?/span>,所以
,解得
,
所以橢圓的標(biāo)準(zhǔn)方程為
.
(2)當(dāng)與
軸重合時(shí),
,滿足條件;當(dāng)
與
軸垂直時(shí),滿足條件,
當(dāng)與
軸不重合且不垂直時(shí),設(shè)
為
,
,
,
把代入
,得
,
則,
,
因?yàn)?/span>
,
而,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,
,集合
,且集合
滿足
,
.
(1)求實(shí)數(shù)的值;
(2)對(duì)集合,其中
,定義由
中的元素構(gòu)成兩個(gè)相應(yīng)的集合:
,
,其中
是有序數(shù)對(duì),集合
和
中的元素個(gè)數(shù)分別為
和
,若對(duì)任意的
,總有
,則稱集合
具有性質(zhì)
.
①請(qǐng)檢驗(yàn)集合與
是否具有性質(zhì)
,并對(duì)其中具有性質(zhì)
的集合,寫(xiě)出相應(yīng)的集合
和
;
②試判斷和
的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當(dāng)在
處取得極值時(shí),若關(guān)于x的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
(2)若對(duì)任意的,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)用“五點(diǎn)法”作出在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(2)寫(xiě)出的對(duì)稱中心與單調(diào)遞增區(qū)間,并求
振幅、周期、頻率、相位及初相;
(3)求的最大值以及取得最大值時(shí)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),若存在
,使得
,且對(duì)任意
,均有
(即
是一個(gè)公差為
的等差數(shù)列),則稱數(shù)列
是一個(gè)長(zhǎng)度為
的“弱等差數(shù)列”.
(1)判斷下列數(shù)列是否為“弱等差數(shù)列”,并說(shuō)明理由.
①1,3,5,7,9,11;
②2,,
,
,
.
(2)證明:若,則數(shù)列
為“弱等差數(shù)列”.
(3)對(duì)任意給定的正整數(shù),若
,是否總存在正整數(shù)
,使得等比數(shù)列:
是一個(gè)長(zhǎng)度為
的“弱等差數(shù)列”?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)的圖象沿著
軸向左平移
個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的
倍(橫坐標(biāo)不變)后得到函數(shù)
的圖象,對(duì)于函數(shù)
有以下四個(gè)判斷:
(1)該函數(shù)的解析式為;
(2)該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱;
(3)該函數(shù)在上是增函數(shù);
(4)若函數(shù)在
上的最小值為
,則
.
其中正確的判斷有( )
A.個(gè)B.
個(gè)C.
個(gè)D.
個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A、B,交其準(zhǔn)線l于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )
A.y2=9xB.y2=6x
C.y2=3xD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com