【題目】已知圓,點(diǎn)
坐標(biāo)為
.
(1)如圖1,斜率存在且過點(diǎn)的直線
與圓交于
兩點(diǎn).①若
,求直線
的斜率;②若
,求直線
的斜率.
(2)如圖2,為圓
上兩個(gè)動(dòng)點(diǎn),且滿足
,
為
中點(diǎn),求
的最小值.
【答案】(1)①或1;②
或
;(2)
;
【解析】
(1)設(shè)直線的方程為:
,
,
,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,由
,則
,即
,即可求出
的值;由
,則
,解方程組即可;
(2)連結(jié),依題意可得
,可得
,設(shè)點(diǎn)
的坐標(biāo)為
,即可得動(dòng)點(diǎn)
點(diǎn)的軌跡;
解:(1)設(shè)直線的方程為:
,
,
.
聯(lián)立方程得:,消去
整理可得:
.
恒成立,
由韋達(dá)定理可得:
①,
②.
又,
,即
.
整理可得:.
將①②代入可得:.
,化簡得:
.
直線
的斜率
的值為
或1.
(2)點(diǎn)
,
,
.
,
,整理可得
.
都在圓
上,
,即
.
③-④可得:.
將代入
解得:
.
此時(shí),直線
的斜率
的值為
或
.
(3)如圖,連結(jié).
,
,
又為
中點(diǎn),
.
為圓上兩點(diǎn),
,
又為
中點(diǎn),
.
,又
,
.
設(shè)點(diǎn)的坐標(biāo)為
,整理可得:
.
點(diǎn)的軌跡是以
為圓心,
為半徑的圓.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
附表:
由算得,
,
參照附表,得到的正確結(jié)論是
A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無關(guān)”
C. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
D. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為橢圓
的左、右焦點(diǎn),點(diǎn)
為橢圓
的左頂點(diǎn),點(diǎn)
為橢圓
的上頂點(diǎn),且
.
(Ⅰ)若橢圓的離心率為
,求橢圓
的方程;
(Ⅱ)設(shè)為橢圓
上一點(diǎn),且在第一象限內(nèi),直線
與
軸相交于點(diǎn)
,若以
為直徑的圓經(jīng)過點(diǎn)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱與地面垂直,燈桿
與燈柱
所在的平面與道路走向垂直,路燈
采用錐形燈罩,射出的光線與平面
的部分截面如圖中陰影部分所示.已知
,
,路寬
米.設(shè)
.
(1)求燈柱的高
(用
表示);
(2)此公司應(yīng)該如何設(shè)置的值才能使制造路燈燈柱
與燈桿
所用材料的總長度最?最小值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的離心率為
,過其右焦點(diǎn)
與長軸垂直的直線與橢圓在第一象限相交于點(diǎn)
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為
,右頂點(diǎn)為
,點(diǎn)
是橢圓上的動(dòng)點(diǎn),且點(diǎn)
與點(diǎn)
,
不重合,直線
與直線
相交于點(diǎn)
,直線
與直線
相交于點(diǎn)
,求證:以線段
為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面
為菱形,
,H為
上的點(diǎn),過
的平面分別交
于點(diǎn)
,且
平面
.
(1)證明: ;
(2)當(dāng)為
的中點(diǎn),
,
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列命題:①在中,若
則
是鈍角三角形;②在
中
,
,
,若
,則
是直角三角形;③若
是
的兩個(gè)內(nèi)角,且
,則
;④若
分別是
的三個(gè)內(nèi)角
所對(duì)邊的長,且
,則
一定是鈍角三角形.其中真命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表為年至
年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼
年份
.
年份代碼 | ||||
線下銷售額 |
(1)已知與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測
年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、
位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有
人、女顧客有
人,能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com