【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱與地面垂直,燈桿
與燈柱
所在的平面與道路走向垂直,路燈
采用錐形燈罩,射出的光線與平面
的部分截面如圖中陰影部分所示.已知
,
,路寬
米.設(shè)
.
(1)求燈柱的高
(用
表示);
(2)此公司應(yīng)該如何設(shè)置的值才能使制造路燈燈柱
與燈桿
所用材料的總長度最小?最小值為多少?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
的單調(diào)區(qū)間;
(2)若不等式對任意的正實數(shù)
都成立,求實數(shù)
的最大整數(shù);
(3)當時,若存在實數(shù)
且
,使得
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項是正數(shù)的數(shù)列的前
項和為
.若
,且
.
(1)求數(shù)列的通項公式;
(2)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(-2,1),
=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若x,y在區(qū)間[1,6]內(nèi)取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點
坐標為
.
(1)如圖1,斜率存在且過點的直線
與圓交于
兩點.①若
,求直線
的斜率;②若
,求直線
的斜率.
(2)如圖2,為圓
上兩個動點,且滿足
,
為
中點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓:
的離心率為
,過其右焦點
與長軸垂直的直線與橢圓在第一象限相交于點
,
.
(1)求橢圓的標準方程;
(2)設(shè)橢圓的左頂點為
,右頂點為
,點
是橢圓上的動點,且點
與點
,
不重合,直線
與直線
相交于點
,直線
與直線
相交于點
,求證:以線段
為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近13年的宣傳費
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
由散點圖知,按建立
關(guān)于
的回歸方程是合理的.令
,則
,經(jīng)計算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤與
的關(guān)系為
.根據(jù)(1)的結(jié)果,求當年宣傳費
時,年利潤的預報值是多少?
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com