【題目】已知四棱錐,底面
為菱形,
,H為
上的點,過
的平面分別交
于點
,且
平面
.
(1)證明: ;
(2)當(dāng)為
的中點,
,
與平面
所成的角為
,求二面角
的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)連結(jié)交
于點
,連結(jié)
.由題意可證得
平面
,則
.由線面平行的性質(zhì)定理可得
,據(jù)此即可證得題中的結(jié)論;
(2)結(jié)合幾何體的空間結(jié)構(gòu)特征建立空間直角坐標系,求得半平面的法向量,然后求解二面角的余弦值即可.
(1)證明:連結(jié)交
于點
,連結(jié)
.因為
為菱形,所以
,且
為
、
的中點,因為
,所以
,
因為且
平面
,所以
平面
,
因為平面
,所以
.
因為平面
,
平面
,且平面
平面
,
所以,所以
.
(2)由(1)知且
,因為
,且
為
的中點,
所以,所以
平面
,所以
與平面
所成的角為
,
所以,所以,因為
,所以
.
分別以,
,
為
軸,建立如圖所示空間直角坐標系,設(shè)
,則
,
所以.
記平面的法向量為
,則
,
令,則
,所以
,
記平面的法向量為
,則
,
令,則
,所以
,
記二面角的大小為
,則
.
所以二面角的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,
,
,
,四邊形
是直角梯形,
,
,
,平面
平面
.
(1)求證:平面
;
(2)在線段上是否存在一點
,使得平面
與平面
所成的銳二面角的余弦值為
,若存在,求出點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足
,且當(dāng)
時,
成立,若
,
,
,則a,b,c的大小關(guān)系是()
A. aB.
C.
D. c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點
坐標為
.
(1)如圖1,斜率存在且過點的直線
與圓交于
兩點.①若
,求直線
的斜率;②若
,求直線
的斜率.
(2)如圖2,為圓
上兩個動點,且滿足
,
為
中點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的離心率為
,過其右焦點
與長軸垂直的直線與橢圓在第一象限相交于點
,
.
(1)求橢圓的標準方程;
(2)設(shè)橢圓的左頂點為
,右頂點為
,點
是橢圓上的動點,且點
與點
,
不重合,直線
與直線
相交于點
,直線
與直線
相交于點
,求證:以線段
為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓C:的左右焦點分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點.O為坐標原點.
(1)若直線l過點F1,且|AB|=,求k的值;
(2)若以AB為直徑的圓過原點O,試探究點O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com