日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
          (1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
          (2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為 ,求 的值.

          【答案】
          (1)解:

          .∴


          (2)解:由 , ,∵0<A<π,

          .∴ ,

          ∴在△ABC中,由余弦定理得:a2=b2+c2﹣2bccosA=3,∴

          ,∴


          【解析】(1)利用向量的數(shù)量積通過二倍角公式,兩角和的正弦函數(shù)化簡函數(shù)的表達式,然后求f(x)的最小正周期,借助正弦函數(shù)的單調(diào)減區(qū)間求出函數(shù)的單調(diào)遞減區(qū)間;(2)通過f(A)=2,利用三角形的內(nèi)角,求出A的值,利用△ABC的面積為
          【考點精析】利用正弦函數(shù)的單調(diào)性對題目進行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)=ax2bxc(a,b,cR)滿足:對任意實數(shù)x,都有f(x)≥x,且當x(1,3)時,有f(x)≤ (x+2)2成立.

          (1)證明:f(2)=2;

          (2)f(-2)=0,求f(x)的表達式;

          (3)設(shè)g(x)=f(x)-xx[0,+∞),若g(x)圖象上的點都位于直線y的上方,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過大年,吃水餃是我國不少地方過春節(jié)的一大習(xí)俗.2018年春節(jié)前夕,A市某質(zhì)檢部門隨機抽取了100包某種品牌的速凍水餃作樣本,檢測其某項質(zhì)量指標,檢測結(jié)果如頻率分布直方圖所示.

          (1)求所抽取的100包速凍水餃該項質(zhì)量指標值的樣本平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

          (2)若該品牌的速凍水餃的某項質(zhì)量指標Z服從正態(tài)分布其中近似為樣本平均數(shù),近似為樣本方差

          ①求Z落在內(nèi)的概率;

          若某人從某超市購買了1包這種品牌的速凍水餃,發(fā)現(xiàn)該包速凍水餃某項質(zhì)量指標值為55,根據(jù)原則判斷該包速凍水餃某項質(zhì)量指標值是否正常

          附:①;

          ②若,則,,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.

          月收入(單位百元)

          [15,25

          [25,35

          [35,45

          [45,55

          [55,65

          [65,75

          頻數(shù)

          5

          10

          15

          10

          5

          5

          贊成人數(shù)

          4

          8

          12

          5

          2

          1

          (1)由以上統(tǒng)計數(shù)據(jù)求下面22列聯(lián)表中的的值,并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令” 的態(tài)度有差異;

          月收入低于55百元的人數(shù)

          月收入不低于55百元的人數(shù)

          合計

          贊成

          a

          b

          不贊成

          c

          d

          合計

          50

          (2)若對在[55,65)內(nèi)的被調(diào)查者中隨機選取兩人進行追蹤調(diào)查,記選中的2人中不贊成“樓市限購令”的人數(shù)為,求的概率.

          附:,

          0.10

          0.05

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,則實數(shù)k的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: =1的左頂點為A(﹣3,0),左焦點恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點A且與圓M相切于點B的直線,交橢圓C于點P,P與橢圓C右焦點的連線交橢圓于Q,若三點B,M,Q共線,求實數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)f(x)=sin(x+ )圖象上各點的橫坐標縮短到原來的 倍(縱坐標不變),再把得到的圖象向右平移 個單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
          (1)求角A的大小;
          (2)若 ,求b+c的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)是定義在(﹣4,4)上的奇函數(shù),滿足f2)=1,當﹣4x≤0時,有fx)=

          1)求實數(shù)a,b的值;

          2)若fm+1+>0.求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案