【題目】已知函數(shù)在
(
為自然對(duì)數(shù)的底)時(shí)取得極值且有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)記函數(shù)的兩個(gè)零點(diǎn)為
,證明:
.
【答案】(1);(2)見解析.
【解析】
試題分析:(1) 在
時(shí)取得極值
,由
的符號(hào)及函數(shù)的單調(diào)性可知
為函數(shù)的極大值,所以
有兩個(gè)零點(diǎn)等價(jià)于
,解之即可;(2) 不妨設(shè)
,由題意知
,兩式相加可得
即
,欲證
,只需證明:
,只需證明:
,即證
即可,設(shè)
,則只需證明:
,構(gòu)造函數(shù)
,證
即可.
試題解析: (1),
由,且當(dāng)
時(shí),
,當(dāng)
時(shí),
,
所以在
時(shí)取得極值,所以
,
所以,函數(shù)
在
上遞增,在
上遞減,
,
時(shí),
時(shí),
有兩個(gè)零點(diǎn)
,
故;.
(2)不妨設(shè),由題意知
,
則,
欲證,只需證明:
,只需證明:
,
即證:,
即證,設(shè)
,則只需證明:
,
也就是證明:,
記,∴
,
∴在
單調(diào)遞增,
∴,所以原不等式成立,故
得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)
的動(dòng)直線
相交于
點(diǎn),與橢圓
分別交于
與
不同四點(diǎn),直線
的斜率
滿足
, 已知
與
軸重合時(shí),
.
(1)求橢圓的方程;
(2)是否存在定點(diǎn)使得
為定值,若存在,求出
點(diǎn)坐標(biāo)并求出此定值,若不存在,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線通過一塊玻璃,其強(qiáng)度要損失10%,把幾塊這樣的玻璃重疊起來,設(shè)光線原來的強(qiáng)度為,通過
塊玻璃以后強(qiáng)度為
.
(Ⅰ)寫出關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)通過多少塊玻璃以后,光線強(qiáng)度減弱到原來的以下.(lg3≈0.4771).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內(nèi)的增函數(shù),求
的取值范圍;
(2)若函數(shù)(其中
為
的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于某設(shè)備的使用年限與所支出的維修費(fèi)用
(萬元),有如下統(tǒng)計(jì)資料:
設(shè)對(duì)
呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程的回歸系數(shù)
;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以(單位:盒,
)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,
(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量和中位數(shù);
(2)將表示為
的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率
,且橢圓
經(jīng)過點(diǎn)
,直線
:
與橢圓
交于不同的兩點(diǎn)
,
.
(1)求橢圓的方程;
(2)若△的面積為1(
為坐標(biāo)原點(diǎn)),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)有獎(jiǎng)銷售中,購滿100元商品得1張獎(jiǎng)券,多購多得,1000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎(jiǎng)券的中獎(jiǎng)概率;
(3)1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,
)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com