日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知實數(shù),設(shè)函數(shù)

          1)求函數(shù)的單調(diào)區(qū)間;

          2)當(dāng)時,若對任意的,均有,求的取值范圍.

          注:為自然對數(shù)的底數(shù).

          【答案】1內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;(2

          【解析】

          (1)求導(dǎo)后取出極值點,再分,兩種情況進行討論即可.

          (2)當(dāng)時得出的一個取值范圍,再討論時的情況,再對時構(gòu)造函數(shù)兩邊取對數(shù)進行分析論證恒成立.

          (1)由,解得

          ①若,則當(dāng)時,,故內(nèi)單調(diào)遞增;

          當(dāng)時,,故內(nèi)單調(diào)遞減.

          ②若,則當(dāng)時,,故內(nèi)單調(diào)遞增;

          當(dāng)時,,故內(nèi)單調(diào)遞減.

          綜上所述,內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

          (2),即

          ,得,則

          當(dāng)時,不等式顯然成立,

          當(dāng)時,兩邊取對數(shù),即恒成立.

          令函數(shù),即內(nèi)恒成立.

          ,得

          故當(dāng)時,,單調(diào)遞增;

          當(dāng)時,,單調(diào)遞減.

          因此

          令函數(shù),其中,

          ,得,

          故當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.

          ,,

          故當(dāng)時,恒成立,因此恒成立,

          即當(dāng)時,對任意的,均有成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若恒成立,.的最大值;

          2)若函數(shù)有且只有一個零點,且滿足條件的,使不等式恒成立,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點,點,點,動圓軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點均不同于點),且交于點,設(shè)點的軌跡為曲線.

          (1)證明:為定值,并求的方程;

          (2)設(shè)直線的另一個交點為,直線交于兩點,當(dāng)三點共線時,求四邊形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】東京夏季奧運會推遲至2021723日至88日舉行,此次奧運會將設(shè)置4 100米男女混泳接力賽這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運動員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運動員完成,且每名運動員都要出場.若中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔(dān)仰泳或者自由泳,男運動員乙只能承擔(dān)蝶泳或者蛙泳,剩下2名運動員四種泳姿都可以承擔(dān),則中國隊參賽的安排共有(

          A.144B.8C.24D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角ABC中,a2,_______,求ABC的周長l的范圍.

          在①(﹣cos,sin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

          注:這三個條件中任選一個,補充在上面問題中并對其進行求解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域為的函數(shù)滿足:對任何,都有,且當(dāng)時,.在下列結(jié)論:

          1)對任何,都有;(2)任意,都有

          3)函數(shù)的值域是;

          4函數(shù)在區(qū)間上單調(diào)遞減的充要條件是存在,使得

          其中正確命題是(

          A.1)(2B.1)(2)(3C.1)(3)(4D.2)(3)(4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段是夾在兩個球體之間的內(nèi)弦,其中兩點在小球上,兩點在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當(dāng)四面體的體積達到最大值時,此時異面直線的夾角為,則

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在等腰中,,分別為,的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

          (1)證明:平面;

          (2)求平面與平面所成銳二面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是兩個非零平面向量則有

          ①若,

          ②若

          ③若,則存在實數(shù)使得

          ④若存在實數(shù),使得四個命題中真命題的序號為 __________.(填寫所有真命題的序號)

          【答案】①③④

          【解析】逐一考查所給的結(jié)論:

          ①若,則,據(jù)此有:,說法①正確;

          ②若,,則

          ,說法②錯誤;

          ③若,則,據(jù)此有:,

          由平面向量數(shù)量積的定義有:,

          則向量反向,故存在實數(shù),使得,說法③正確;

          ④若存在實數(shù),使得,則向量與向量共線,

          此時,

          若題中所給的命題正確,則

          該結(jié)論明顯成立.即說法④正確;

          綜上可得:真命題的序號為①③④.

          點睛:處理兩個向量的數(shù)量積有三種方法:利用定義;利用向量的坐標(biāo)運算;利用數(shù)量積的幾何意義.具體應(yīng)用時可根據(jù)已知條件的特征來選擇,同時要注意數(shù)量積運算律的應(yīng)用.

          型】填空
          結(jié)束】
          17

          【題目】已知在,.

          (1)求角的大小;

          (2)設(shè)數(shù)列滿足,項和為,的值.

          查看答案和解析>>

          同步練習(xí)冊答案