【題目】在四棱錐中,底面
是邊長為2的正方形,
底面
,四棱錐
的體積
,M是
的中點(diǎn).
(1)求異面直線與
所成角的余弦值;
(2)求點(diǎn)B到平面的距離.
【答案】(1)(2)
【解析】
(1)取中點(diǎn)N,連接
,則
,則
與
所成的角就是異面直線
與
所成的角,即
,進(jìn)而求解即可;
(2)在平面內(nèi)過點(diǎn)A作
,垂足為E,先證得
平面
,再根據(jù)
平面
可得點(diǎn)B到平面
的距離等于點(diǎn)A到平面
的距離,即為
,進(jìn)而求解即可
(1)取中點(diǎn)N,連接
,
∵底面
,且底面
是邊長為2的正方形,則底面積為
,
,解得
,
∵分別為
的中點(diǎn),∴
,
所以與
所成的角就是異面直線
與
所成的角,即
,
因?yàn)?/span>,
所以,
所以異面直線與
所成角的余弦值為
(2)在平面內(nèi)過點(diǎn)A作
,垂足為E,
∵底面
,
平面
,∴
,
∵四邊形是正方形,則
,
∵,∴
平面
,
∵平面
,∴
,又∵
,
,∴
平面
,
∵,
平面
,
平面
,∴
平面
,
所以,點(diǎn)B到平面的距離等于點(diǎn)A到平面
的距離,即為
,
在中,
,
,故
,
因此,點(diǎn)B到平面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是圓
:
上任意一點(diǎn),
,線段
的垂直平分線與半徑
交于點(diǎn)
,當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),記點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)記曲線與
軸交于
兩點(diǎn),
是直線
上任意一點(diǎn),直線
,
與曲線
的另一個(gè)交點(diǎn)分別為
,求證:直線
過定點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個(gè)關(guān)于軸對(duì)稱的半圓和一個(gè)雙曲線的一部分組成的圖形,其中上半個(gè)圓所在圓方程是
,雙曲線的左、右頂點(diǎn)
、
是該圓與
軸的交點(diǎn),雙曲線與半圓相交于與
軸平行的直徑的兩端點(diǎn).
(1)試求雙曲線的標(biāo)準(zhǔn)方程;
(2)記雙曲線的左、右焦點(diǎn)為、
,試在“8”字形曲線上求點(diǎn)
,使得
是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形中,四邊形
為長方形,
為邊長為
的正三角形,將
沿
折起,使得點(diǎn)
在平面
上的射影恰好在
上.
(Ⅰ)當(dāng)時(shí),證明:平面
平面
;
(Ⅱ)若,求平面
與平面
所成二面角的余弦值的絕對(duì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求
與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對(duì)于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長為6,寬為3的矩形折成正三棱柱,三棱柱的高度為3,矩形的對(duì)角線和三棱柱的側(cè)棱
、
的交點(diǎn)記為
.
(1)在三棱柱中,若過
三點(diǎn)做一平面,求截得的幾何體
的表面積;
(2)求三棱柱中異面直線與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,設(shè)直線
過橢圓
的上頂點(diǎn)和右頂點(diǎn),坐標(biāo)原點(diǎn)
到直線
的距離為
.
(1)求橢圓的方程.
(2)過點(diǎn)且斜率不為零的直線
交橢圓
于
,
兩點(diǎn),在
軸的正半軸上是否存在定點(diǎn)
,使得直線
,
的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是拋物線W:y2=4x上的三個(gè)點(diǎn),D是x軸上一點(diǎn).
(1)當(dāng)點(diǎn)B是W的頂點(diǎn),且四邊形ABCD為正方形時(shí),求此正方形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形ABCD是否可能為正方形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
的兩條漸近線與拋物線
的準(zhǔn)線分別交于
,
兩點(diǎn).若雙曲線
的離心率為
,
的面積為
,
為坐標(biāo)原點(diǎn),則拋物線
的焦點(diǎn)坐標(biāo)為 ( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com