日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函數(shù)f(x)=1﹣
          (1)若x∈[0, ],求函數(shù)f(x)的值域;
          (2)當(dāng)x∈[0,π]時,求f(x)的單調(diào)遞增區(qū)間.

          【答案】
          (1)解:由題意: =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),

          函數(shù)f(x)=1﹣

          =1+2 cosxsin(π﹣x)﹣2cosxsin( ﹣x)

          =1+2 sinxcosx﹣2cos2x

          =1+ sin2x﹣1﹣cos2x

          = sin2x﹣cos2x

          =2sin(2x﹣ ),

          當(dāng)x∈[0, ]時,2x- ∈[- , ],

          當(dāng)x=- 時,f(x)取值最小值為﹣1,

          當(dāng)x= 時,f(x)取得最大值為2,

          所以函數(shù)f(x)的值域為[﹣1,2]


          (2)解:由(1)可得f(x)=2sin(2x﹣ ),

          由正弦函數(shù)圖象及性質(zhì)可知:單調(diào)遞增區(qū)間為[ , ](k∈Z).

          (k∈Z).

          解得: (k∈Z).

          又∵x∈[0,π]

          當(dāng)k=0時,可得:

          當(dāng)k=1時,可得:

          ∴f(x)的單調(diào)遞增區(qū)間為[0, ]和[ ,π]


          【解析】(1)利用向量的乘積運算求出f(x)的解析式,將函數(shù)化為y=Asin(ωx+φ)的形式,在求解x∈[0, ],函數(shù)f(x)的最值,即可得值域.(2)當(dāng)x∈[0,π]時,求出內(nèi)層函數(shù)的范圍,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;求f(x)的單調(diào)遞增區(qū)間.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A,B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.

          (1)求證:△APM∽△ABP;
          (2)求證:四邊形PMCD是平行四邊形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓M的方程為,直線l的方程為,點P在直線l上,過點P作圓M的切線PAPB,切點為A,B

          ,試求點P的坐標(biāo);

          求四邊形PAMB面積的最小值及此時點P的坐標(biāo);

          求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,則輸出的實數(shù)m的值為(

          A.9
          B.10
          C.11
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=﹣SnSn+1 , 則使 取得最大值時n的值為明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2axx2-3ln x,其中a∈R,為常數(shù).

          (1)若f(x)在x∈[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;

          (2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】盒子里裝有大小質(zhì)量完全相同且分別標(biāo)有數(shù)字1、2、3、4的四個小球,從盒子里隨機摸出兩個小球,那么事件“摸出的小球上標(biāo)有的數(shù)字之和大于數(shù)字之積”的概率是______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列四個命題,其中正確命題的個數(shù)(
          ①若a>|b|,則a2>b2
          ②若a>b,c>d,則a﹣c>b﹣d
          ③若a>b,c>d,則ac>bd
          ④若a>b>o,則
          A.3個
          B.2個
          C.1個
          D.0個

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點,,在拋物線上,的重心與此拋物線的焦點重合(如圖)

          (I)寫出該拋物線的方程和焦點的坐標(biāo);

          (II)求線段中點的坐標(biāo);

          (III)求弦所在直線的方程

          查看答案和解析>>

          同步練習(xí)冊答案