日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知 .

          討論的單調(diào)性;

          ,求實(shí)數(shù)的取值范圍.

          【答案】(Ⅰ)詳見解析;(Ⅱ) .

          【解析】試題分析:

          Ⅰ)由函數(shù)的解析式可得 ,當(dāng)時(shí), , 上單調(diào)遞增;當(dāng)時(shí),由導(dǎo)函數(shù)的符號(hào)可知單調(diào)遞減;在單調(diào)遞增.

          Ⅱ)構(gòu)造函數(shù),問題轉(zhuǎn)化為上恒成立,求導(dǎo)有,注意到.分類討論:當(dāng)時(shí),不滿足題意. 當(dāng)時(shí), , 上單調(diào)遞增;所以,滿足題意.

          則實(shí)數(shù)的取值范圍是.

          試題解析:

          ,

          當(dāng)時(shí), .上單調(diào)遞增;

          當(dāng)時(shí),由,得.

          當(dāng)時(shí), ;當(dāng)時(shí), .

          所以單調(diào)遞減;在單調(diào)遞增.

          Ⅱ)令,

          問題轉(zhuǎn)化為上恒成立,

          ,注意到.

          當(dāng)時(shí),

          ,

          因?yàn)?/span>,所以,

          所以存在,使

          當(dāng)時(shí), , 遞減,

          所以,不滿足題意.

          當(dāng)時(shí), ,

          當(dāng)時(shí), ,

          所以, 上單調(diào)遞增;所以,滿足題意.

          綜上所述: .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).

          (1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

          ②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.

          附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;

          ②若,則,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地戶家庭的年收入(萬元)和年飲食支出 (萬元)的統(tǒng)計(jì)資料如下表:

          (1)求關(guān)于的線性回歸方程;(結(jié)果保留到小數(shù)點(diǎn)后為數(shù)字)

          (2)利用(1)中的回歸方程,分析這戶家庭的年飲食支出的變化情況,并預(yù)測(cè)該地年收入 萬元的家庭的年飲食支出.(結(jié)果保留到小數(shù)點(diǎn)后位數(shù)字)

          附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

          ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是直角梯形, , ,

          ,點(diǎn)在線段上,且, , 平面.

          1)求證:平面平面;

          2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,圓的圓心為.已知點(diǎn),且為圓上的動(dòng)點(diǎn),線段的中垂線交于點(diǎn).

          (Ⅰ)求點(diǎn)的軌跡方程;

          (Ⅱ)設(shè)點(diǎn)的軌跡為曲線,拋物線 的焦點(diǎn)為., 是過點(diǎn)互相垂直的兩條直線,直線與曲線交于, 兩點(diǎn),直線與曲線交于, 兩點(diǎn),求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【2018江蘇南京師大附中、天一、海門、淮陰四校高三聯(lián)考如圖,一只螞蟻從單位正方體的頂點(diǎn)出發(fā),每一步(均為等可能性的)經(jīng)過一條邊到達(dá)另一頂點(diǎn),設(shè)該螞蟻經(jīng)過步回到點(diǎn)的概率

          (I)分別寫出的值;

          (II)設(shè)頂點(diǎn)出發(fā)經(jīng)過步到達(dá)點(diǎn)的概率為,求的值;

          (III)求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐 平面,底面中, , ,且, 的中點(diǎn).

          (1)求證:平面平面

          (2)問在棱上是否存在點(diǎn),使平面,若存在,請(qǐng)求出二面角的余弦值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), 的圖象在處的切線方程為.

          (1)求函數(shù)的單調(diào)區(qū)間與極值;

          (2)若存在實(shí)數(shù),使得成立,求整數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過站的地鐵票價(jià)如下表:

          乘坐站數(shù)

          票價(jià)(元)

          現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為 .

          (1)求甲、乙兩人付費(fèi)相同的概率;

          (2)設(shè)甲、乙兩人所付費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案