日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知曲線的焦點是,、是曲線上不同兩點,且存在實數(shù)使得,曲線在點處的兩條切線相交于點

          1)求點的軌跡方程;

          2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當時,求四邊形的面積.

          【答案】1;(2.

          【解析】

          1)由題意知、、三點共線,可設直線的方程為,并設點,,將直線的方程與曲線的方程聯(lián)立,并列出韋達定理,利用導數(shù)求出曲線在點、處的切線方程,將兩切線方程聯(lián)立,求出點的坐標,即可得出點的軌跡方程;

          2)由,利用坐標運算得出,代入韋達定理解出,根據(jù)對稱性取,求出線段的中點的坐標為,由轉化為可求出點的坐標,并得出點的坐標,利用弦長公式計算出,利用點到直線的距離公式分別計算出的高,并計算出這兩個三角形的面積,相加即可得出四邊形的面積.

          1)曲線就是拋物線,它的焦點坐標為

          存在實數(shù)使得,則、三點共線.

          當直線斜率不存在時,不符合題意;

          當直線斜率存在時,設直線的方程為,與聯(lián)立消去,整理得,判別式,設,,

          、就是方程的兩實根,,

          ,,切線斜率,

          則曲線在點處的切線方程是,即①.

          同理得曲線在點處的切線方程是②.

          聯(lián)立①②得,得,所以點的坐標為.

          因此,點的軌跡方程為;

          2)已知,在(1)的解答的基礎上,

          ,,則.

          ,解得,,代入中,解得,

          注意到對稱性,求四邊形面積,只需取即可.

          ,設中點為,則,

          已知點在以點為直徑的圓上,則,

          ,由,得,即

          解得,則.

          將直線的方程化為,

          則點的距離.

          所以

          在(1)的解答中,聯(lián)立①②消去解得

          則兩切線交點坐標為,

          時,,此時,點的坐標為

          的距離

          所以

          又已知、兩側,所以

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)

          1)求的值;

          2時,求的取值范圍;

          3)函數(shù)的性質通常指的是函數(shù)的定義域、值域、單調性、周期性、奇偶性等,請你探究函數(shù)其中的三個性質(直接寫出結論即可)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統(tǒng)計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.

          (1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);

          (2)請問能有多大把握認為藥物有效?

          (參考公式:獨立性檢驗臨界值表

          概率

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          患病

          不患病

          合計

          服藥

          沒服藥

          合計

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,,直線)與橢圓交于,兩點(點軸的上方).

          1)若,求的面積;

          2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】,分別為內角所對的邊,且滿足.

          (Ⅰ)的大。

          (Ⅱ)現(xiàn)給出三個條件:; ;.

          試從中選出兩個可以確定的條件,寫出你的選擇并以此為依據(jù)求的面積 (只需寫出一個選定方案即可,選多種方案以第一種方案記分)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),則下列命題正確的是______填上你認為正確的所有命題的序號

          函數(shù)的單調遞增區(qū)間是;函數(shù)的圖像關于點對稱;

          函數(shù)的圖像向左平移個單位長度后,所得的圖像關于y軸對稱,m的最小值是

          若實數(shù)m使得方程上恰好有三個實數(shù)解,,,

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線L,曲線C的參數(shù)方程為為參數(shù))

          求直線L和曲線C的普通方程;

          在曲線C上求一點Q,使得Q到直線L的距離最小,并求出這個最小值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】橢圓經(jīng)過為坐標原點,線段的中點在圓上.

          (1)求的方程;

          (2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某地區(qū)實施光盤行動以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預交元,啤酒根據(jù)需要自己用量杯量取,結賬時,根據(jù)每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足升的,按升計算(如剩余升,記為剩余).例如:結賬時,某桌剩余酒量恰好為升,則該桌的每位客人還應付.統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關關系,下面是隨機采集的組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,,,.

          剩余酒量(單位:升)

          升以上(含升)

          結賬時的倍率

          1)求由這組數(shù)據(jù)得到的關于的回歸直線方程;

          2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時,酒吧服務生對小王說,根據(jù)他的經(jīng)驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請位或位朋友一起來飲酒,會更劃算.試向小王是否該接受服務生的建議?

          參考數(shù)據(jù):回歸直線的方程是,其中,.

          查看答案和解析>>

          同步練習冊答案