【題目】某港口某天0時至24時的水深(米)隨時間
(時)變化曲線近似滿足如下函數(shù)模型
(
).若該港口在該天0時至24時內(nèi),有且只有3個時刻水深為3米,則該港口該天水最深的時刻不可能為( )
A.16時B.17時C.18時D.19時
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
是兩個平面,
,
是兩條直線,下列命題錯誤的是( )
A.如果,
,那么
.
B.如果,
,那么
.
C.如果,
,
,那么
.
D.如果內(nèi)有兩條相交直線與
平行,那么
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面
底面
,四邊形
為菱形,
是邊長為2的等邊三角形,
,點(diǎn)
為
的中點(diǎn).
(1)若平面與平面
交于直線
,求證:
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二階矩陣A=.
(1) 求A-1;
(2) 若曲線C在矩陣A對應(yīng)的變換作用下得到曲線C′:6x2-y2=1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,
,
,
,
,
分別為
的中點(diǎn),
.
(1)求證:平面平面
;
(2)設(shè),若平面
與平面
所成銳二面角
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學(xué)校決定組織甲、乙兩隊進(jìn)行羽毛球?qū)官悓?shí)戰(zhàn)訓(xùn)練.每隊四名運(yùn)動員,并統(tǒng)計了以往多次比賽成績,按由高到低進(jìn)行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊同名次的運(yùn)動員進(jìn)行對抗,每場對抗賽都互不影響,當(dāng)甲、乙兩隊的四名隊員都進(jìn)行一次對抗賽后稱為一個輪次.按以往多次比賽統(tǒng)計的結(jié)果,甲、乙兩隊同名次進(jìn)行對抗時,甲隊隊員獲勝的概率分別為,
,
,
.
(1)進(jìn)行一個輪次對抗賽后一共有多少種對抗結(jié)果?
(2)計分規(guī)則為每次對抗賽獲勝一方所在的隊得1分,失敗一方所在的隊得0分,設(shè)進(jìn)行一個輪次對抗賽后甲隊所得分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某芯片公司對今年新開發(fā)的一批 5G 手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了 100 顆芯片,所調(diào)查的芯片得分均在7,19內(nèi),將所得統(tǒng)計數(shù)據(jù)分為如下:,
,
,
,
,
六個小組,得到如圖所示的頻率分布直方圖,其中
.
(1)求這 100 顆芯片評測分?jǐn)?shù)的平均數(shù);
(2)芯片公司另選 100 顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在 3 個工程手機(jī)中進(jìn)行初測若 3 個工程手機(jī)的評分都達(dá)到 13 萬分,則認(rèn)定該芯片合格;若 3 個工程手機(jī)中只要有 2 個評分沒達(dá)到 13 萬分,則認(rèn)定該芯片不合格;若 3 個工程手機(jī)中僅 1 個評分沒有達(dá)到 13萬分,則將該芯片再分別置于另外 2 個工程手機(jī)中進(jìn)行二測,二測時,2 個工程手機(jī)的評分都達(dá)到 13萬分,則認(rèn)定該芯片合格;2個工程手機(jī)中只要有 1 個評分沒達(dá)到 13 萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機(jī)中的測試費(fèi)用均為 160 元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試.現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為 5 萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這 100 顆芯片?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是首項(xiàng)為
,公差為
的等差數(shù)列,
是首項(xiàng)為
,公比為q的等比數(shù)列.
(1)設(shè),若
對
均成立,求d的取值范圍;
(2)若,證明:存在
,使得
對n=2,3,···,m+1均成立,并求d的取值范圍(用
表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是自然對數(shù)的底數(shù),
,已知函數(shù)
,
.
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)對于,證明:當(dāng)
時,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com