日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),.

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)是否存在實(shí)數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,請說明理由.

          【答案】(1)見解析;(2)

          【解析】

          1)結(jié)合的定義域,以及導(dǎo)數(shù)的零點(diǎn)的情況,確定分類討論的標(biāo)準(zhǔn)為,從而求出對應(yīng)的單調(diào)區(qū)間.

          2)由(1)可知,只有當(dāng)時(shí),在定義域內(nèi)有一個(gè)零點(diǎn),即為的極大值點(diǎn).要使得極大值,等價(jià)轉(zhuǎn)化為使得,再結(jié)合導(dǎo)函數(shù)的性質(zhì),即可得求得的范圍.

          1)函數(shù)的定義域?yàn)?/span>.

          ①當(dāng)時(shí),,∵

          函數(shù)單調(diào)遞增區(qū)間為.

          當(dāng)時(shí),令, .

          )當(dāng),即時(shí), ,

          函數(shù)的單調(diào)遞增區(qū)間為.

          )當(dāng),即時(shí),方程的兩個(gè)實(shí)根分別為

          .

          ,則,此時(shí),當(dāng)時(shí),.

          ∴函數(shù)的單調(diào)遞增區(qū)間為,

          ,則,

          此時(shí),當(dāng)時(shí),,單調(diào)遞增

          當(dāng)時(shí), 單調(diào)遞減

          綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為單調(diào)遞減區(qū)間為

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.

          2)解:由(1)得當(dāng)時(shí),函數(shù)上單調(diào)遞增,

          故函數(shù)無極值;

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          ;

          有極大值,其值為, 其中.

          ,∴

          設(shè)函數(shù),則

          上為增函數(shù).

          ,故等價(jià)于.

          因而 等價(jià)于.

          即在時(shí),方程的大根大于1

          設(shè),由于的圖象是開口向下的拋物線,且經(jīng)過點(diǎn)(0,1),對稱軸,則只需,即

          解得,而,

          故實(shí)數(shù)的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個(gè)元素的交和并也屬于T

          (1)當(dāng)T的元素個(gè)數(shù)為2時(shí),請寫出所有符合條件的T.

          (2)當(dāng)T的元素個(gè)數(shù)為3時(shí),請寫出所有符合條件的T.

          (3)求所有符合條件的T的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.

          (I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;

          (II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】1)時(shí)間經(jīng)過(時(shí)),時(shí)針、分針各轉(zhuǎn)了多少度?各等于多少弧度?

          2)有人說,鐘的時(shí)針和分針一天內(nèi)會(huì)重合24次。你認(rèn)為這種說法是否正確?請說明理由.

          (提示:從午夜零時(shí)算起,假設(shè)分針走了t min會(huì)與時(shí)針重合,一天內(nèi)分針和時(shí)針會(huì)重合n次,建立t關(guān)于n的函數(shù)解析式,并畫出其圖象,然后求出每次重合的時(shí)間)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),), ).

          (1)如果是關(guān)于的不等式的解,求實(shí)數(shù)的取值范圍;

          (2)判斷的單調(diào)性,并說明理由;

          (3)證明:函數(shù)存在零點(diǎn)q,使得成立的充要條件是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線為參數(shù)), 為參數(shù)).

          (1)化,的方程為普通方程,并說明它們分別表示什么曲線;

          (2)直線的極坐標(biāo)方程為,若上的點(diǎn)對應(yīng)的參數(shù)為,上的動(dòng)點(diǎn),求線段的中點(diǎn)到直線距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列結(jié)論中正確的個(gè)數(shù)是(

          ①正三棱錐的頂點(diǎn)在底面的射影到底面各頂點(diǎn)的距離相等;

          ②有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;

          ③兩個(gè)底畫平行且相似的多面體是棱臺;

          ④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.

          A.0B.1C.5D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以下不等式中錯(cuò)誤的是(  )

          A.B.

          C.D.

          查看答案和解析>>

          同步練習(xí)冊答案