【題目】在直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線
:
(
為參數(shù)),
:
(
為參數(shù)).
(1)化,
的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)直線的極坐標(biāo)方程為
,若
上的點(diǎn)
對(duì)應(yīng)的參數(shù)為
,
為
上的動(dòng)點(diǎn),求線段
的中點(diǎn)
到直線
距離的最小值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)利用同角三角函數(shù)的平方關(guān)系消去參數(shù),即可化為普通方程,并根據(jù)方程形式判斷曲線類型.
(2)先根據(jù)題意,將直線的直角坐標(biāo)方程求出來(lái),將坐標(biāo)求出來(lái),再利用參數(shù)法,表示線段
的中點(diǎn)
到直線
距離,從而得到該距離的函數(shù),通過(guò)研究函數(shù)得到其最小值.
(1)因?yàn)?/span>:
(
為參數(shù)),
消去參數(shù)得:,表示以
為圓心,
為半徑的圓;
因?yàn)?/span>:
(
為參數(shù)),
消去參數(shù)得:,表示焦點(diǎn)在
軸上的橢圓.
(2)因?yàn)橹本的極坐標(biāo)方程為
,
利用互化公式可得直角坐標(biāo)方程為:,
因?yàn)槿?/span>上的點(diǎn)
對(duì)應(yīng)的參數(shù)為
,所以
,
因?yàn)?/span>為
上的動(dòng)點(diǎn),則設(shè)
,
所以線段的中點(diǎn)
,
設(shè)到直線
距離為
,則有
所以當(dāng)時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說(shuō)明兩事件相關(guān)程度越大,②以模型
去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
的值分別是
和
,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過(guò)回歸直線
=
+
及回歸系數(shù)
,可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱錐中,平面
平面
,
是邊長(zhǎng)為4,的正三角形,
是頂角
的等腰三角形,點(diǎn)
為
上的一動(dòng)點(diǎn).
(1)當(dāng)時(shí),求證:
;
(2)當(dāng)直線與平面
所成角為
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得函數(shù)
的極值大于
?若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;
(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)“兩個(gè)一百年”奮斗目標(biāo)、實(shí)現(xiàn)中華民族偉大復(fù)興中國(guó)夢(mèng)的“關(guān)注度”(單位:天),某中學(xué)團(tuán)委組織學(xué)生在十字路口采用隨機(jī)抽樣的方法抽取了80名青年學(xué)生(其中男女人數(shù)各占一半)進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組青年學(xué)生的月“關(guān)注度”分為6組: ,
,
,
,
,
,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)現(xiàn)從“關(guān)注度”在的男生與女生中選取3人,設(shè)這3人來(lái)自男生的人數(shù)為
,求
的分布列與期望;
(3)在抽取的80名青年學(xué)生中,從月“關(guān)注度”不少于25天的人中隨機(jī)抽取2人,求至少抽取到1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)若x∈[,
],求f(x)的取值范圍
(2)若對(duì)任意的x1∈[1,,總存在x2∈[
,
]使得mlog2(﹣6x12+24x1﹣16)﹣f(x2)
0(m>0)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓的離心率為
,橢圓上動(dòng)點(diǎn)
到一個(gè)焦點(diǎn)的距離的最小值為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)的動(dòng)直線l與橢圓C交于 A,B 兩點(diǎn),試判斷以AB為直徑的圓是否恒過(guò)定點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過(guò)點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問(wèn)在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com