日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】求下列函數(shù)的單調(diào)區(qū)間.

          (1)f(x)=(x∈[-2,4]);

          (2)y.

          【答案】(1) [-2,4]為函數(shù)的單調(diào)遞減區(qū)間(2) 單調(diào)遞減區(qū)間是(-∞,-1),(-1,+∞).

          【解析】

          試題分析:(1)根據(jù)復(fù)合函數(shù)單調(diào)性法則確定函數(shù)單調(diào)性,再根據(jù)定義區(qū)間確定單調(diào)區(qū)間,(2)先確定函數(shù)定義域,再根據(jù)分式函數(shù)單調(diào)性確定單調(diào)區(qū)間.

          試題解析:(1)已知函數(shù)的定義域為4-x≥0,即(-∞,4],而[-2,4]為其定義域的子區(qū)間,又yy=4-x[-2,4]上的單調(diào)性相同,且均為減函數(shù),

          [-2,4]為函數(shù)的單調(diào)遞減區(qū)間.

          (2)函數(shù)y的定義域為(-∞,-1)∪(-1,+∞),

          函數(shù)y(-∞,-1)上是減函數(shù),在(-1,+∞)上是減函數(shù),

          函數(shù)y的單調(diào)遞減區(qū)間是(-∞,-1)(-1,+∞).

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180)[180,200)[200,220)[220,240)[240260)[260,280)[280300)分組的頻率分布直方圖如圖所示:

          1)求直方圖中的值;

          2)用分層抽樣的方法從[260,280)和[280300)這兩組用戶中確定6人做隨訪,再從這6人中隨機抽取2人做問卷調(diào)查,則這2人來自不同組的概率是多少?

          3)求月平均用電量的眾數(shù)和中位數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】 如圖所示在四邊形ABCD,∠D=2∠B,AD=1, CD=3,cos B.

          (1)求△ACD的面積;

          (2)BC,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知命題pk2﹣8k﹣20≤0,命題q:方程1表示焦點在x軸上的雙曲線.

          (1)命題q為真命題,求實數(shù)k的取值范圍;

          (2)若命題“pq”為真,命題“pq”為假,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓,點P是曲線上的動點,過點P分別向圓N引切線為切點)

          1)若,求切線的方程;

          2)若切線分別交y軸于點,點P的橫坐標大于2,求的面積S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,其中常數(shù).

          (1)當時,求函數(shù)的極值;

          (2)若函數(shù)有兩個零點,求證: ;

          (3)求證: .

          選做題:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的焦點在x軸上,中心在坐標原點,離心率,橢圓上的點到左焦點的距離的最大值為.

          1)求橢圓的標準方程;

          2)過橢圓的右焦點F作與坐標軸不垂直的直線l,交橢圓于A、B兩點,設(shè)點是線段OF上的一個動點,且,求m的取值范圍;

          3)設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得CB、N三點共線?若存在,求出定點N的坐標,若不存在,請說明理由;

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在極坐標系中,曲線的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).

          1)求曲線的直角坐標系方程和直線的普通方程;

          2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐,平面,,,且,.

          (1)取中點,求證:平面;

          (2)求直線所成角的余弦值.

          (3)在線段上,是否存在一點,使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案