日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
          A.(選修4-1:幾何證明選講)
          過圓O外一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點(diǎn)使得BC=5,求線段AB的長(zhǎng).
          B.(選修4-2:矩陣與變換)
          求曲線C:xy=1在矩陣對(duì)應(yīng)的變換作用下得到的曲線C′的方程.
          C.(選修4-4:坐標(biāo)系與參數(shù)方程)
          已知曲線C1(θ為參數(shù))和曲線C2:ρsin(θ-)=
          (1)將兩曲線方程分別化成普通方程;
          (2)求兩曲線的交點(diǎn)坐標(biāo).
          D.(選修4-5:不等式選講)
          已知|x-a|<,|y-b|<,求證:|2x-3y-2a+3b|<c.

          【答案】分析:A:根據(jù)同弧所對(duì)的圓周角與弦切角相等,得到∠C=∠BAP,根據(jù)所給的兩個(gè)角相等,得到兩個(gè)三角形相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例,得到比例式,代入已知的長(zhǎng)度,求出結(jié)果.
          B:設(shè)P(x,y)為曲線xy=1上的任意一點(diǎn),在矩陣A變換下得到另一點(diǎn)P'(x',y'),根據(jù)法則 = ,求出即 x=+),
          y=- ).再由x•y=1 可得  -=2,從而得到曲線C′的方程.
          C:把參數(shù)方程化為普通方程,把極坐標(biāo)方程化為直角坐標(biāo)方程,聯(lián)立方程組求得求兩曲線的交點(diǎn)坐標(biāo).
          D:由題意可得|2x-2a|<,|3y-3b|<,故|2x-2a|+|3y-3b|<c.再根據(jù)絕對(duì)值不等式的性質(zhì)可得|2x-3y-2a+3b|≤|2x-2a|+|3y-3b|,從而證得不等式.
          解答:解:A:∵∠BAC=∠APB,∠C=∠BAP,∴△PAB∽△ACB,∴  AB2=PB•BC=7×5=35,∴AB=
          B:設(shè)P(x,y)為曲線xy=1上的任意一點(diǎn),在矩陣A變換下得到另一點(diǎn)P'(x',y'),
          則有 = ,∴x′=(x-y),y′=(x+y),
          即 x=(x′+y′),y=( y′-x′ ).
          再由x•y=1可得 -=2,故的曲線C′的方程為y2-x2=1.
          C:(1)把曲線C1(θ為參數(shù)),利用同角三角函數(shù)基本關(guān)系化為普通方程為 +=1. 
          把曲線C2:ρsin(θ-)= 即 ρsinθ-cosθ=,化為直角坐標(biāo)為 x-y+2=0.
          (2)由  解得 ,或 ,故兩曲線的交點(diǎn)坐標(biāo)為(0,2)或(-,).
          D:∵已知|x-a|<,|y-b|<,∴|2x-2a|<,|3y-3b|<,∴|2x-2a|+|3y-3b|<c.
          再由|2x-3y-2a+3b|=|(2x-2a)-(3y-3b)|≤|2x-2a|+|3y-3b|,
          可得|2x-3y-2a+3b|<c.
          點(diǎn)評(píng):本題可選圓的切線的性質(zhì)的應(yīng)用,考查同弧所對(duì)的圓周角等于弦切角,考查三角形相似的判斷和性質(zhì).求曲線關(guān)于矩陣變換后的曲線方程.把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,求兩曲線的交點(diǎn)坐標(biāo).絕對(duì)值不等式的性質(zhì)應(yīng)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過
          N點(diǎn)的切線交CA的延長(zhǎng)線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長(zhǎng).
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
          D.選修4-5:不等式選講
          設(shè)a,b,c均為正實(shí)數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
          B.選修4-2:矩陣與變換
          設(shè)M=
          .
          10
          02
          .
          ,N=
          .
          1
          2
          0
          01
          .
          ,試求曲線y=sinx在矩陣MN變換下的曲線方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
          D.選修4-5:不等式選講
          解不等式:|2x+1|-|x-4|<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          (B)(選修4-2:矩陣與變換)
          二階矩陣M有特征值λ=8,其對(duì)應(yīng)的一個(gè)特征向量e=
          1
          1
          ,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成點(diǎn)(-2,4),求矩陣M2
          (C)(選修4-4:坐標(biāo)系與參數(shù)方程)
          已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
          x=-
          3
          t
          y=1+t
          (t為參數(shù),t∈R).試在曲線C上一點(diǎn)M,使它到直線l的距離最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請(qǐng)?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟).
          A、(選修4-1:幾何證明選講)
          如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
          B、(選修4-2:矩形與變換)
          已知a,b實(shí)數(shù),如果矩陣M=
          1a
          b2
          所對(duì)應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
          C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
          設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
          π
          4
          )=
          2
          2
          上的動(dòng)點(diǎn),判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
          D、(選修4-5:不等式選講)
          設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
          ab
          +
          bc
          +
          ca

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

          B.選修4-2:矩陣與變換
          已知a,b∈R若矩陣M=
          .
          -1a
          b3
          .
          所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

          C.選修4-4:坐標(biāo)系與參數(shù)方程
          將參數(shù)方程
          x=2(t+
          1
          t
          )
          y=4(t-
          1
          t
          )
          (t為參數(shù))化為普通方程.
          D.選修4-5:不等式選講
          已知a,b是正數(shù),求證:(a+
          1
          b
          )(2b+
          1
          2a
          )≥
          9
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案