日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟).
          A、(選修4-1:幾何證明選講)
          如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
          B、(選修4-2:矩形與變換)
          已知a,b實(shí)數(shù),如果矩陣M=
          1a
          b2
          所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
          C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
          設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
          π
          4
          )=
          2
          2
          上的動(dòng)點(diǎn),判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
          D、(選修4-5:不等式選講)
          設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
          ab
          +
          bc
          +
          ca
          分析:A 利用△ABE∽△ADB,得到
          AB
          AD
          =
          AE
          AB
          ,即可得到 AB2=AE•AD.
          B 設(shè)點(diǎn)(x,y)是直線3x-y=1上的任意一點(diǎn),在矩陣M的作用下點(diǎn)變成(x,y),由條件可得
          x+ay=x
          bx+2y=y
          ,把
           (x,y) 代入x+2y=1化簡,應(yīng)為3x-y=1,比較系數(shù)求出a,b的值.
          C 把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程可得分別表示圓和一條直線,利用點(diǎn)到直線的距離公式可得直線和圓相離,
          從而求得M、N間的最小距離.
          D 由條件得到三個(gè)基本不等式,相加化簡可得結(jié)論.
          解答:解:A、證明:由AB=AC得∠ABC=∠C,又∠C=∠D,∴∠ABC=∠D.
          又∠BAE=∠DAB,∴△ABE∽△ADB,∴
          AB
          AD
          =
          AE
          AB
          ,即 AB2=AE•AD.
          B、解:設(shè)點(diǎn)(x,y)是直線3x-y=1上的任意一點(diǎn),在矩陣M的作用下點(diǎn)變成(x,y),
          .
          1a
          b2
          .
          .
          x
          y
          .
          =
          .
          x
          y
          .
          ,∴
          x+ay=x
          bx+2y=y

          因?yàn)椋▁,y)在x+2y=1上,∴x+ay+2(bx+2y)=1,即 (1+2b)x+(a+4)y=1,∴
          1+2b=3
          a+4=-1
          ,
          解得a=-5,b=1.
          C、解:曲線ρ+2sinθ=0 化為直角坐標(biāo)方程為x2+y2+2y=0,即x2+(y-1)2=1,
          表示以C(0,-1)為圓心,以1為半徑的圓.
          把ρsin(θ+
          π
          4
          )=
          2
          2
          化為直角坐標(biāo)方程為 x+y-1=0,表示一條直線,圓心C到直線的距離
          |-1-1|
          2
          =
          2
          >1,故直線和圓相離,故M、N間的最小距離為
          2
          -1.
          D、證明:∵a,b,c是不完全相等的正數(shù),∴a+b≥2
          ab
          ,c+b≥2
          cb
          ,a+c≥2
          ac

          且這三個(gè)式子不能同時(shí)取等號(hào).
          這三個(gè)式子相加可得2(a+b+c)>2(
          ab
          +
          bc
          +
          ac
          ),即 a+b+c>
          ab
          +
          bc
          +
          ca
          點(diǎn)評:本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,簡單的矩陣運(yùn)算和利用基本不等式證明不等式,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說明、證明過程或演算步驟.
          21-1.(選修4-2:矩陣與變換)
          設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
          (1)求矩陣M的特征值及相應(yīng)的特征向量;
          (2)求逆矩陣M-1以及橢圓
          x2
          4
          +
          y2
          9
          =1在M-1的作用下的新曲線的方程.
          21-2.(選修4-4:參數(shù)方程)
          以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
          π
          2
          ),若直線l過點(diǎn)P,且傾斜角為 
          π
          3
          ,圓C以M為圓心、4為半徑.
          (1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
          (2)試判定直線l和圓C的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過
          N點(diǎn)的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長.
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長.
          D.選修4-5:不等式選講
          設(shè)a,b,c均為正實(shí)數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          (B)(選修4-2:矩陣與變換)
          二階矩陣M有特征值λ=8,其對應(yīng)的一個(gè)特征向量e=
          1
          1
          ,并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成點(diǎn)(-2,4),求矩陣M2
          (C)(選修4-4:坐標(biāo)系與參數(shù)方程)
          已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
          x=-
          3
          t
          y=1+t
          (t為參數(shù),t∈R).試在曲線C上一點(diǎn)M,使它到直線l的距離最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

          B.選修4-2:矩陣與變換
          已知a,b∈R若矩陣M=
          .
          -1a
          b3
          .
          所對應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

          C.選修4-4:坐標(biāo)系與參數(shù)方程
          將參數(shù)方程
          x=2(t+
          1
          t
          )
          y=4(t-
          1
          t
          )
          (t為參數(shù))化為普通方程.
          D.選修4-5:不等式選講
          已知a,b是正數(shù),求證:(a+
          1
          b
          )(2b+
          1
          2a
          )≥
          9
          2

          查看答案和解析>>

          同步練習(xí)冊答案