【題目】已知函數(shù)(
).
(1)若,討論
的單調(diào)性;
(2)若在區(qū)間
內(nèi)有兩個極值點,求實數(shù)a的取值范圍.
【答案】(1)在
上單調(diào)遞減,在
上單調(diào)遞增. (2)
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)的零點個數(shù)確定
的范圍即可.
解:(1)由題意可得的定義域為
,
當(dāng)時,易知
∴由得
,由
得
,
∴在
上單調(diào)遞減,在
上單調(diào)遞增.
(2)由(1)可得,
當(dāng)時,
,
記,則
,
∵在
內(nèi)有兩個極值點,
∴在
內(nèi)有兩個零點,
∴.
令,則
,
當(dāng),即
時,
,所以在
上單調(diào)遞減,
的圖像至多與x軸有一個交點,不滿足題意.
當(dāng),即
時,在
上
,
單調(diào)遞增,
的圖像至多與x軸有一個交點,不滿足題意.
當(dāng),即
時,
在
上單調(diào)遞增,在
上單調(diào)遞減
由知,要使
在
內(nèi)有兩個零點,必須滿足
,解得
.
綜上,實數(shù)a的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.證明:
(1)存在唯一x0∈(0,1),使f(x0)=0;
(2)存在唯一x1∈(1,2),使g(x1)=0,且對(1)中的x0,有x0+x1<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)
的最值;
(2)已知關(guān)于的不等式
對任意的
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l的參數(shù)方程為
(t為參數(shù),
).
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,直線l的傾斜角,P點坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在頭胎生女孩家庭中抽取了5戶,進(jìn)一步了解情況,在抽取的5戶中再隨機抽取3戶,求這3戶中恰好有2戶生二孩的概率.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
,且
,
,
分別為棱
,
,
的中點.
(1)證明:直線與
共面;并求其所成角的余弦值;
(2)在棱上是否存在點
,使得
平面
,若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com