【題目】已知拋物線:
,直線
截拋物線
所得弦長為
.
(1)求的值;
(2)若直角三角形的三個頂點在拋物線
上,且直角頂點
的橫坐標為1,過點
、
分別作拋物線
的切線,兩切線相交于點
.
①若直線經(jīng)過點
,求點
的縱坐標;
②求的最大值及此時點
的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過橢圓:
的左右焦點
分別作直線
,
交橢圓于
與
,且
.
(1)求證:當直線的斜率
與直線
的斜率
都存在時,
為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1,已知側面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C為30°
(1)求AB1與平面BB1C1C所成角的正切值;
(2)在平面AA1B1B內(nèi)找一點P,使三棱錐P﹣BB1C為正三棱錐,并求P到平面BB1C距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓
的普通方程為
.在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)寫出圓的參數(shù)方程和直線
的直角坐標方程;
(2)設點在
上,點Q在
上,求
的最小值及此時點
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在①;②
;③
這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.
在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)
已知函數(shù),
(其中
),其部分圖像如圖所示.
(I)求的解析式;
(II)求函數(shù)在區(qū)間
上的最大值及相應的
值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已過拋物線:
的焦點
作直線
交拋物線
于
,
兩點,以
,
兩點為切點作拋物線的切線,兩條直線交于
點.
(1)當直線平行于
軸時,求點
的坐標;
(2)當時,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com