日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          已知展開式中最后三項的系數(shù)的和是方程的正數(shù)解,它的中間項是,求的值.

          解:由,
          (舍去)或                                       ………2分
          由題意知,,∴                   ………5分
          已知條件知,其展開式的中間項為第4項,
          , ………8分
          ,                                 ………10分
          ,∴.           ………12分

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)如果展開式中,第四項與第六項的系數(shù)相等。求,并求展開式中的常數(shù)項;
          (2)求展開式中的所有的有理項。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          有4名男生、5名女生,全體排成一行,問下列情形各有多少種不同的排法?
          (1)甲不在中間也不在兩端;(2)甲、乙兩人必須排在兩端;
          (3)男、女生分別排在一起;(4)男女相間;
          (5)甲、乙、丙三人從左到右順序保持一定.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          用紅、黃、藍、白、黑五種顏色在田字形的四個小方格內(nèi),每格涂一種顏色,相鄰兩格涂不同的顏色,如果顏色可以反復(fù)使用。

          (1)從中任選四種顏色涂色,有多少種不同的涂法?
          (2)按要求任意選色涂,共有多少種不同的涂法?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分15分)若展開式中前三項系數(shù)成等差數(shù)列.
          (1)求n的值;
          (2)求展開式中第4項的系數(shù)和二項式系數(shù);
          (3)求展開式中x的一次項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求3名男生和4名女生按下列要求排成一排的排法總數(shù)(結(jié)果用數(shù)字表示)
          (1)男生甲只排中間或兩頭;         (2)所有女生排在一起
          (3)男生不相鄰                     (4)男生甲在女生乙的左邊(可以不相鄰)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列的前項和為,,滿足
          (1)計算、、,并猜想的表達式;
          (2)用數(shù)學(xué)歸納法證明你猜想的的表達式。(13分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)在二項式的展開式中,若第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,
          (Ⅰ)求展開式中二項式系數(shù)最大的項;
          (Ⅱ)若前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項是第幾項?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
          (1)求x2的系數(shù)的最小值;
          (2)當(dāng)x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
          解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
          +22+2n(n-1)=+(11-m)(-1)=(m)2.
          m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
          (2)由(1)知,當(dāng)x2的系數(shù)取得最小值時,m=5,n=3,
          f (x)=(1+x)5+(1+2x)3.設(shè)這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
          x=1,a0a1a2a3a4a5=2533,
          x=-1,a0a1a2a3a4a5=-1,
          兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

          查看答案和解析>>

          同步練習(xí)冊答案