日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的圖象如圖所示,為得到的g(x)=Acosωx的圖象,可以將f(x)的圖象(
          A.向左平移
          B.向左平移
          C.向右平移
          D.向右平移

          【答案】B
          【解析】解:根據(jù)函數(shù)的圖象:A=1, T=4( )=π,
          所以:ω= =2,
          當(dāng)x= 時,f( )=0,可得:cos(2× +φ)=0,由五點作圖法可得:2× +φ=
          解得:φ=﹣ ,
          所以f(x)=cos(2x﹣ ),g(x)=cos2x.
          要得到g(x)=cos2x的圖象只需將f(x)的圖象向左平移 個單位即可.
          故選:B.
          首先根據(jù)圖象求出函數(shù)的解析式,進一步利用函數(shù)的圖象變換求出結(jié)果.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 的正方形,E為PC的中點,PB=PD.平面PBD⊥平面ABCD.
          (1)證明:PA∥平面EDB.
          (2)求三棱錐E﹣BCD與三棱錐P﹣ABD的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外探究小組,每名同學(xué)至多參加兩個小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時參加數(shù)學(xué)和物理小組的有6人,同時參加物理和化學(xué)小組的有4人,則同時參加數(shù)學(xué)和化學(xué)小組的有人.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示:則中位數(shù)與眾數(shù)分別為(

          A.3與3
          B.23與3
          C.3與23
          D.23與23

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an]的前n項和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)證明: +… (n∈N*)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點.

          (1)求證:平面ABM⊥平面PCD;
          (2)求直線CD與平面ACM所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}滿足a1= ,an+1=a ﹣an+1,則M= + +…+ 的整數(shù)部分是(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=
          (Ⅰ)求證:BD⊥PC;
          (Ⅱ)求證:MN∥平面PDC;
          (Ⅲ)求二面角A﹣PC﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a∈R,若x>0時均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,則a=

          查看答案和解析>>

          同步練習(xí)冊答案