【題目】設(shè),
滿足約束條件
,則
的最大值為_______.
【答案】4
【解析】,畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)
處取得最大值為
.
[點(diǎn)睛]本小題主要考查線性規(guī)劃的基本問題,考查了指數(shù)的運(yùn)算. 畫二元一次不等式或
表示的平面區(qū)域的基本步驟:①畫出直線
(有等號(hào)畫實(shí)線,無等號(hào)畫虛線);②當(dāng)
時(shí),取原點(diǎn)作為特殊點(diǎn),判斷原點(diǎn)所在的平面區(qū)域;當(dāng)
時(shí),另取一特殊點(diǎn)判斷;③確定要畫不等式所表示的平面區(qū)域.
【題型】填空題
【結(jié)束】
14
【題目】已知數(shù)列的前
項(xiàng)和公式為
,若
,則數(shù)列
的前
項(xiàng)和
__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點(diǎn)
是對(duì)角線
上的動(dòng)點(diǎn)(點(diǎn)
與
不重合),則下列結(jié)論正確的是____.
①存在點(diǎn),使得平面
平面
;
②存在點(diǎn),使得
平面
;
③的面積不可能等于
;
④若分別是
在平面
與平面
的正投影的面積,則存在點(diǎn)
,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,
平面
,底面
是等腰梯形,且
,其中
.
(1)證明:平面 平面
.
(2)求點(diǎn) 到平面
的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求
),每小時(shí)可獲得利潤是
元.
(1)要使生產(chǎn)該產(chǎn)品小時(shí)獲得的利潤不低于
元,求
的取值范圍;
(2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為
,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為,多個(gè)區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)
[3,5)的長度d=(2-1)+(5-3)=3. 用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中
.設(shè)
,
,當(dāng)
時(shí),不等式
解集區(qū)間的長度為
,則
的值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過橢圓
:
的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)
,
,
是橢圓
上的兩點(diǎn),它們?cè)?/span>
軸兩側(cè),且
的平分線在
軸上,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點(diǎn).
【答案】(Ⅰ).(Ⅱ)直線
過定點(diǎn)
.
【解析】【試題分析】(I)根據(jù)圓的半徑和已知 ,故
,由此求得橢圓方程.(II)設(shè)出直線
的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,寫出
的斜率并相加,由此求得直線
過定點(diǎn)
.
【試題解析】
(Ⅰ)圓與
軸交點(diǎn)
即為橢圓的焦點(diǎn),圓
與
軸交點(diǎn)
即為橢圓的上下兩頂點(diǎn),所以
,
.從而
,
因此橢圓的方程為:
.
(Ⅱ)設(shè)直線的方程為
.
由,消去
得
.
設(shè),
,則
,
.
直線的斜率
;
直線的斜率
.
.
由的平分線在
軸上,得
.又因?yàn)?/span>
,所以
,
所以.
因此,直線過定點(diǎn)
.
[點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長、弦中點(diǎn)問題.(3)軌跡問題.(4)定值、最值及參數(shù)范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,
為等邊三角形,且平面
平面
,
,
,
.
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為
,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點(diǎn)為
,連接
,
.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得
,由此證得
平面
,故
,故
.(II) 可知
是棱錐的高,利用體積公式求得
,利用勾股定理和等腰三角形的性質(zhì)求得
的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取的中點(diǎn)為
,連接
,
,
∵為等邊三角形,∴
.
底面中,可得四邊形
為矩形,∴
,
∵,∴
平面
,
∵平面
,∴
.
又,所以
.
(Ⅱ)由面面
,
,
∴平面
,所以
為棱錐
的高,
由,知
,
,
∴.
由(Ⅰ)知,
,∴
.
.
由,可知
平面
,∴
,
因此.
在中
,
,
取的中點(diǎn)
,連結(jié)
,則
,
,
∴
.
所以棱錐的側(cè)面積為
.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過橢圓
:
的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)
,
,
是橢圓
上的兩點(diǎn),它們?cè)?/span>
軸兩側(cè),且
的平分線在
軸上,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次
之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次
之間的關(guān)系為
,
,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com