【題目】如圖,在多面體中,
兩兩垂直,四邊形
是邊長為2的正方形,
,且
.
(1)證明:平面平面
;
(2)求點到平面
的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在橢圓上任取一點
(
不為長軸端點),連結(jié)
、
,并延長與橢圓
分別交于點
、
兩點,已知
的周長為8,
面積的最大值為
.
(1)求橢圓的方程;
(2)設(shè)坐標(biāo)原點為,當(dāng)
不是橢圓的頂點時,直線
和直線
的斜率之積是否為定值?若是定值,請求出這個定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2015年至2019年國內(nèi)游客人次y(單位:億)的散點圖.
為了預(yù)測2025年國內(nèi)游客人次,根據(jù)2015年至2019年的數(shù)據(jù)建立了與時間變量
(時間變量
的值依次為1,2,..,5)的3個回歸模型:①
;②
;③
.其中
相關(guān)指數(shù).
(1)你認(rèn)為用哪個模型得到的預(yù)測值更可靠?并說明理由.
(2)根據(jù)(1)中你選擇的模型預(yù)測2025年國內(nèi)游客人次,結(jié)合已有數(shù)據(jù)說明數(shù)據(jù)反映出的社會現(xiàn)象并給國家相關(guān)部門提出應(yīng)對此社會現(xiàn)象的合理化建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),集合
.
(1)當(dāng)時,解不等式
;
(2)若,且
,求實數(shù)
的取值范圍;
(3)當(dāng)時,若函數(shù)
的定義域為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
為參數(shù)),在以坐標(biāo)原點
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,點
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
.
(1)求直線的直角坐標(biāo)方程與曲線
的普通方程;
(2)若是曲線
上的動點,
為線段
的中點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,
,則下面結(jié)論正確的是( )
A.把上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
B.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
C.把上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
D.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)設(shè)函數(shù),討論
的單調(diào)性;
(2)設(shè)函數(shù),若
的圖象與
的圖象有
,
兩個不同的交點,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某機械零件的幾何結(jié)構(gòu),該幾何體是由兩個相同的直四棱柱組合而成的,且前后,左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側(cè)棱互相垂直.則這個幾何體的體積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com