日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

          I)當(dāng)時,求證平面

          II)當(dāng)二面角的大小為時,求直線與平面所成角的正弦值.

          【答案】(Ⅰ)證明見解析;()

          【解析】

          )在平行四邊形中,

          ,,

          易知,

          平面,所以平面,∴,

          在直角三角形中,易得,

          在直角三角形中,,,又,,

          可得

          .

          ,平面

          )由()可知,,

          可知為二面角的平面角,

          ,此時的中點(diǎn).

          ,連結(jié),則平面平面,

          ,平面,連結(jié),

          可得為直線與平面所成的角.

          因?yàn)?/span>,,

          所以.

          中,,

          直線與平面所成角的正弦值為.

          解法二:依題意易知,平面ACD.以A為坐標(biāo)原點(diǎn),AC、AD、SA分別為軸建立空間直角坐標(biāo)系,則易得

          )由,

          易得,從而平面

          (Ⅱ)平面,二面角的平面角.

          ,則的中點(diǎn),

          ,

          設(shè)平面的法向量為

          ,令,,

          從而,

          直線與平面所成角的正弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中,,點(diǎn)分別為棱的中點(diǎn).

          (Ⅰ)求證:∥平面

          ()求證:平面平面;

          ()在線段上是否存在一點(diǎn),使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

          (1)求直線的直角坐標(biāo)方程與曲線的普通方程;

          (2)若是曲線上的動點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)集合 ,其中為虛數(shù)單位,若復(fù)數(shù),則對應(yīng)的點(diǎn)在復(fù)平面內(nèi)所形成圖形的面積為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)濟(jì)訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進(jìn)貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(fèi)(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費(fèi),為每次訂貨費(fèi). 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費(fèi)為120元/年,每次訂貨費(fèi)為2500元.

          (1)若該化工廠每次訂購300噸甲醇,求年存儲成本費(fèi);

          (2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費(fèi)最少?最少費(fèi)用為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.

          表1:某年部分日期的天安門廣場升旗時刻表

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          1月1日

          7:36

          4月9日

          5:46

          7月9日

          4:53

          10月8日

          6:17

          1月21日

          7:31

          4月28日

          5:19

          7月27日

          5:07

          10月26日

          6:36

          2月10日

          7:14

          5月16日

          4:59

          8月14日

          5:24

          11月13日

          6:56

          3月2日

          6:47

          6月3日

          4:47

          9月2日

          5:42

          12月1日

          7:16

          3月22日

          6:15

          6月22日

          4:46

          9月20日

          5:59

          12月20日

          7:31

          表2:某年2月部分日期的天安門廣場升旗時刻表

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          2月1日

          7:23

          2月11日

          7:13

          2月21日

          6:59

          2月3日

          7:22

          2月13日

          7:11

          2月23日

          6:57

          2月5日

          7:20

          2月15日

          7:08

          2月25日

          6:55

          2月7日

          7:17

          2月17日

          7:05

          2月27日

          6:52

          2月9日

          7:15/p>

          2月19日

          7:02

          2月28日

          6:49

          (1)從表1的日期中隨機(jī)選出一天,試估計(jì)這一天的升旗時刻早于7:00的概率;

          (2)甲,乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨(dú)立.記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的分布列和數(shù)學(xué)期望

          (3)將表1和表2中的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為).記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷的大小(只需寫出結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1),求函數(shù)的所有零點(diǎn);

          (2),證明函數(shù)不存在極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,且.

          (1)求證:

          (2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓經(jīng)過點(diǎn),長軸長是短軸長的2倍.

          (1)求橢圓的方程;

          (2)設(shè)直線經(jīng)過點(diǎn)且與橢圓相交于兩點(diǎn)(異于點(diǎn)),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

          查看答案和解析>>

          同步練習(xí)冊答案