函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)將的圖像向左平移
個(gè)單位,再將得到的圖像橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到
的圖像,若
的圖像與直線(xiàn)
交點(diǎn)的橫坐標(biāo)由小到大依次是
求數(shù)列
的前2n項(xiàng)的和。
(Ⅰ)的單調(diào)遞減區(qū)間為
;(Ⅱ)
.
解析試題分析:(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間,首先對(duì)
進(jìn)行恒等變化,將它變?yōu)橐粋(gè)角的一個(gè)三角函數(shù),然后利用三角函數(shù)的單調(diào)性,來(lái)求函數(shù)
的單調(diào)遞減區(qū)間,本題首先通過(guò)降冪公式降冪,及倍角公式,得到
與
的關(guān)系式,再利用兩角和的三角函數(shù)公式,得到
,從而得到單調(diào)遞減區(qū)間;(Ⅱ)本題由
的圖像,根據(jù)圖象的變化規(guī)律得到函數(shù)
的圖象;從而求出
的解析式,再結(jié)合正弦曲線(xiàn)的對(duì)稱(chēng)性,周期性求出相鄰兩項(xiàng)的和及其規(guī)律,最后結(jié)合等差數(shù)列的求和公式即可得到結(jié)論.
試題解析:(Ⅰ). 4分
令,所以
所以的單調(diào)遞減區(qū)間為
. 6分
(Ⅱ)將的圖象向左平移
個(gè)單位后,
得到. 7分
再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到, 8分解法一:若函數(shù)
的圖象與直線(xiàn)
交點(diǎn)的橫坐標(biāo)由小到大依次是
、
、
、
、
,則由余弦曲線(xiàn)的對(duì)稱(chēng)性,周期性可知,
9分
所以
. 12分
解法二:若函數(shù)的圖象與直線(xiàn)
交點(diǎn)的橫坐標(biāo)由小到大依次是
、
、
、
、
,則
. 9分
由余弦曲線(xiàn)的周期性可知,;
所以. 12分
考點(diǎn):二倍角的余弦;兩角和與差的正弦函數(shù);二倍角的正弦;函數(shù)的圖象變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
的最大值為2.
(Ⅰ)求函數(shù)在
上的值域;
(Ⅱ)已知外接圓半徑
,
,角
所對(duì)的邊分別是
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求
值;
(Ⅱ)若存在區(qū)間(
且
),使得
在
上至少含有6個(gè)零
點(diǎn),在滿(mǎn)足上述條件的中,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的最小正周期為
.
(I)求函數(shù)的對(duì)稱(chēng)軸方程;
(II)若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以角為鈍角的的三角形
內(nèi)角
的對(duì)邊分別為
、
、
,
,且
與
垂直.
(1)求角的大;
(2)求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為,已知函數(shù)
R).
(Ⅰ)求函數(shù)的最小正周期和最大值;
(Ⅱ)若函數(shù)在
處取得最大值,且
,求
的面積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知角的頂點(diǎn)在原點(diǎn),始邊與x軸正半軸重合,終邊為射線(xiàn)4x+3y=0(x≥0),求5sin
-3 tan
+2cos
的值.
(2)化簡(jiǎn):.其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,
,
三點(diǎn).
(1)求向量和向量
的坐標(biāo);
(2)設(shè),求
的最小正周期;
(3)求的單調(diào)遞減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com