【題目】在直角坐標(biāo)系中,曲線
:
與直線
:
交于
,
兩點.
(1)當(dāng)時,求
的面積的取值范圍.
(2)軸上是否存在點
,使得當(dāng)
變動時,總有
?若存在,求點
的坐標(biāo);若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知向量,
,
,求
的值.
(2)已知,
,
與
共線且方向相同,求x.
(3)設(shè)向量,
,
,求當(dāng)k為何值時,A,B,C三點共線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
是函數(shù)
的反函數(shù).
求函數(shù)
的解析式,并寫出定義域
;
設(shè)
,判斷并證明函數(shù)
在區(qū)間
上的單調(diào)性:
若
中的函數(shù)
在區(qū)間
內(nèi)的圖像是不間斷的光滑曲線,求證:函數(shù)
在區(qū)間
內(nèi)必有唯一的零點(假設(shè)為
),且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實力相等的甲、乙兩隊參加乒乓球團體比 賽,規(guī)定5局3勝制(即5局內(nèi)誰先贏3局就算勝出并停止比賽).
⑴試求甲打完5局才能取勝的概率.
⑵按比賽規(guī)則甲獲勝的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線段為圓
:
的一條直徑,其端點
,
在拋物線
:
上,且
,
兩點到拋物線
焦點的距離之和為
.
(I)求直徑所在的直線方程;
(II)過點的直線
交拋物線
于
,
兩點,拋物線
在
,
處的切線相交于
點,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩實數(shù)不相等且均不為
.若函數(shù)
在
時,函數(shù)值
的取值區(qū)間恰為
,就稱區(qū)間
為
的一個“倒域區(qū)間”.已知函數(shù)
.
(1)求函數(shù)在
內(nèi)的“倒域區(qū)間”;
(2)若函數(shù)在定義域
內(nèi)所有“倒域區(qū)間”的圖象作為函數(shù)
的圖象,是否存在實數(shù)
,使得
與
恰好有2個公共點?若存在,求出
的取值范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是
,以極點為原點,極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
過點
,傾斜角為
.
(Ⅰ)求曲線的直角坐標(biāo)方程與直線
的參數(shù)方程;
(Ⅱ)設(shè)直線與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點作直線
,交橢圓于
,
兩點.如果
恰好是線段
的中點,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在,
的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com