【題目】已知橢圓:
經(jīng)過點
,左右焦點分別為
、
,圓
與直線
相交所得弦長為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓
上不在
軸上的一個動點,
為坐標原點,過點
作
的平行線交橢圓
于
、
兩個不同的點.
(1)試探究的值是否為一個常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.
(2)記的面積為
,
的面積為
,令
,求
的最大值.
【答案】(Ⅰ); (Ⅱ)(1)
;(2)
.
【解析】試題分析:(Ⅰ)直線與圓相交,根據(jù)弦長公式,求得,再根據(jù)橢圓過定點,建立方程,求得
;(Ⅱ)(1)設直線
的方程為
,直線
的方程為
,根據(jù)弦長公式分別求
,將
表示為
的式子,求定值;(2)將面積表示為
的函數(shù),再通過換元,求函數(shù)的最值.
試題解析:(Ⅰ)由已知可得:圓心到直線的距離為1,即
,所以
,
又橢圓經(jīng)過點
,所以
,得到
,
所以橢圓的標準方程為
.
(Ⅱ)(1)設,
,
,
的方程為
,
則的方程為
.
由得
即
所以
,
由,得
,
所以,
,
,
所以.
(2)∵,∴
的面積
的面積,∴
,
∵到直線
:
的距離
,
∴,令
,則
(
),
,
令,
,
∴在
上為增函數(shù),
,
.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓
的方程為
,若直線
上至少存在一點,使得以該點為圓心,1為半徑的圓與圓
有公共點,則
的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)下列條件求雙曲線的標準方程:
(1)經(jīng)過點(,3),且一條漸近線方程為4x+3y=0.
(2)P(0,6)與兩個焦點的連線互相垂直,與兩個頂點連線的夾角為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2016高考山東文數(shù)】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù).設兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個; ③其余情況獎勵飲料一瓶.
假設轉盤質地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.
(I)求小亮獲得玩具的概率;
(II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】路燈距地面8 m,一個身高為1.6 m的人以84 m/min的速度在地面上從路燈在地面上射影點C沿某直線離開路燈.
(1)求身影的長度y與人距路燈的距離x之間的關系式;
(2)求人離開路燈的第一個10 s內(nèi)身影的平均變化率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com