【題目】如圖,在多面體中,
兩兩垂直,四邊形
是邊長為2的正方形,AC
DG
EF,且
.
(1)證明:平面
.
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)轉(zhuǎn)化成證明平面
,再證明四邊形
為平行四邊形即可得到
,即可得出
平面
.
(2)以為坐標原點,以
所在直線分別為
軸建立如圖所示的空間直角坐標系
,
(1)證明:因為兩兩垂直,
//
,
//
,
所以,所以
平面
,因為
平面
,
所以,因為四邊形
為正方形,所以
,因為
,所以
平面
,因為
所以四邊形
為平行四邊形,所以
,所以
平面
.
(2)由(1)知互相垂直,故以
為坐標原點,以
所在直線分別為
軸建立如圖所示的空間直角坐標系
,
則,
所以.
設(shè)為平面
的法向量,則
,
令,則
,所以
.
又因為平面
,所以
為平面
的一個法向量,
所以,由圖可知二面角
是鈍角,所以二面角
的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓Γ:的左,右焦點分別為F1(
,0),F2(
,0),橢圓的左,右頂點分別為A,B,已知橢圓Γ上一異于A,B的點P,PA,PB的斜率分別為k1,k2,滿足
.
(1)求橢圓Γ的標準方程;
(2)若過橢圓Γ左頂點A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點,問x軸上是否存在一定點Q,使得∠MQA=∠NQA成立,若存在,則求出該定點Q,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,并且經(jīng)過點
.
(1)求橢圓的標準方程;
(2)一條斜率為的直線交橢圓于
,
兩點(不同于
),直線
和
的斜率分別為
,
,滿足
,試判斷直線
是否經(jīng)過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別為內(nèi)角A,B,C的對邊,若
同時滿足以下四個條件中的三個:①
,②
,③
,④
.
(1)條件①②能否同時滿足,請說明理由;
(2)以上四個條件,請在滿足三角形有解的所有組合中任選一組,并求出對應的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,其中
是實常數(shù).
(1)若,求
的取值范圍;
(2)若,求證:函數(shù)
的零點有且僅有一個;
(3)若,設(shè)函數(shù)
的反函數(shù)為
,若
是公差
的等差數(shù)列且均在函數(shù)
的值域中,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“眾志成城,抗擊疫情,一方有難,八方支援”,在此次抗擊疫情過程中,各省市都派出援鄂醫(yī)療隊. 假設(shè)汕頭市選派名主任醫(yī)生,
名護士,組成三個醫(yī)療小組分配到湖北甲、乙、丙三地進行醫(yī)療支援,每個小組包括
名主任醫(yī)生和
名護士,則不同的分配方案有( )
A.種B.
種C.
種D.
種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com