日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
          (Ⅰ)當(dāng)a=0時,解不等式f(x)≥g(x);
          (Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.

          【答案】解:(Ⅰ)當(dāng)a=0時,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 解得﹣ ≤x≤1,
          故不等式的解集為[﹣ ,1].
          (Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,即|x+1|﹣2|x|≥a.
          設(shè)h(x)=|x+1|﹣2|x|=
          故當(dāng)x≥0時,h(x)≤1. 當(dāng)﹣1≤x<0時,﹣2≤h(x)<1. 當(dāng)x<﹣1時,h(x)<﹣2.
          綜上可得h(x)的最大值為1.
          由題意可得1≥a,故實數(shù)a的取值范圍為(﹣∞,1].
          【解析】(Ⅰ)當(dāng)a=0時,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 由此求得不等式的解集.(Ⅱ)由題意可得|x+1|﹣2|x|≥a恒成立,求出h(x)的最大值為1,可得1≥a,由此求得實數(shù)a的取值范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
          (Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等差數(shù)列{an}中,已知a3=5,且a1 , a2 , a5為遞增的等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若數(shù)列{bn}的通項公式 (k∈N*),求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax﹣lnx,F(xiàn)(x)=ex+ax,其中x>0,a<0.
          (1)若f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
          (2)若a∈(﹣∞,﹣ ],且函數(shù)g(x)=xeax1﹣2ax+f(x)的最小值為M,求M的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
          (1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
          (2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

          日需求量n

          14

          15

          16

          17

          18

          19

          20

          頻數(shù)

          10

          20

          16

          16

          15

          13

          10

          以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
          (i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
          (ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 與拋物線y2=2px(p>0)共焦點F2 , 拋物線上的點M到y(tǒng)軸的距離等于|MF2|﹣1,且橢圓與拋物線的交點Q滿足|QF2|= . (Ⅰ)求拋物線的方程和橢圓的方程;
          (Ⅱ)過拋物線上的點P作拋物線的切線y=kx+m交橢圓于A、B兩點,求此切線在x軸上的截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】當(dāng)今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中,隨機抽取n名市民,按年齡情況進(jìn)行統(tǒng)計的得到頻率分布表和頻率分布直方圖如下:

          組數(shù)

          分組(單位:歲)

          頻數(shù)

          頻率

          1

          [20,25)

          5

          0.05

          2

          [25,30)

          20

          0.20

          3

          [30,35)

          a

          0.35

          4

          [35,40)

          30

          b

          5

          [40,45]

          10

          0.10

          合計

          n

          1.00


          (1)求出表中的a,b,n的值,并補全頻率分布直方圖;
          (2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】兩個單位向量 , 的夾角為60°,點C在以O(shè)圓心的圓弧AB上移動, =x +y ,則x+y的最大值為(
          A.1
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱柱 中,底面 為矩形,面 ⊥平面 , = = = , =2, 的中點.
          (Ⅰ)求證: ;
          (Ⅱ)求BD與平面 所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案