【題目】已知函數(shù).
(1)求函數(shù)的最小值;
(2)設,討論函數(shù)
的單調(diào)性;
(3)若斜率為的直線與曲線
交于
,
兩點,其中
,求證:
.
【答案】(1);(2)
時,在區(qū)間
遞增,
時,在
內(nèi)遞增,在
內(nèi)遞減;(3)證明見解析.
【解析】
試題分析:(1)借助題設條件運用導數(shù)的知識求解;(2)借助題設運用導數(shù)的知識求解;(3)依據(jù)題設先等價轉(zhuǎn)化,再構設函數(shù)運用運用導數(shù)的知識分析推證.
試題解析:
(1),令
,得
,
當時,
,當
時,
,
則在
內(nèi)遞減,在
內(nèi)遞增,
所以當時,
.
(2),
,
當時,恒有
,
在區(qū)間
內(nèi)是增函數(shù);
當時,令
,即
,解得
,
令,即
,解得
,
綜上,當時,
在區(qū)間
內(nèi)是增函數(shù),當
時,
在
內(nèi)單調(diào)遞增,在
內(nèi)單調(diào)遞減.
(3)證明:,要證明
,即證
,
等價于,令
(由
,知
),
則只有證,由
,知
,故等價于
(*)
<1>設,則
,所以
在
內(nèi)是增函數(shù),當
時,
,所以
,
<2>設,則
,所以
在
內(nèi)是增函數(shù),所以當
時,
,即
,
由<1><2>知(*)成立,所以.
科目:高中數(shù)學 來源: 題型:
【題目】設:實數(shù)
滿足不等式
,
:函數(shù)
無極值點.
(1)若“”為假命題,“
”為真命題,求實數(shù)
的取值范圍;
(2)已知. “”為真命題,并記為
,且
:
,若
是
的必要不充分條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,
…
后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是70分以上(包括70分)的學生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了促進學生的全面發(fā)展,鄭州市某中學重視學生社團文化建設,現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個金牌社團中抽6人組成社團管理小組,有關數(shù)據(jù)見下表(單位:人):
社團名稱 | 成員人數(shù) | 抽取人數(shù) |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔任管理小組組長,求這2人來自不同社團的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
為常數(shù),
),且數(shù)列
是首項為2,公差為2的等差數(shù)列.
(1)若,當
時,求數(shù)列
的前
項和
;
(2)設,如果
中的每一項恒小于它后面的項,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長為
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,
是
上異于原點
的兩個不同點,直線
和
的傾斜角分別為
和
,當
,
變化且
為定值
(
)時,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如右表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
A.18萬元 B.17萬元 C.16萬元 D.12萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是邊長為2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分別是BC,PC的中點。
(1)求證:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com