【題目】已知圓C經(jīng)過、
兩點,且圓心在直線
上.
(1)求圓C的方程;
(2)若直線經(jīng)過點
且與圓C相切,求直線
的方程.
【答案】(1);(2)
【解析】
試題(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與
聯(lián)立可求得圓心坐標(biāo),再用兩點間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線
斜率不存在時,與圓相切,方程為
;當(dāng)直線
斜率存在時,設(shè)斜率為
,寫出其點斜式方程,利用圓心到直線的距離等于半徑建立方程求解出
的值.
試題解析:(1)依題意知線段的中點
坐標(biāo)是
,直線
的斜率為
,
故線段的中垂線方程是
即
,
解方程組得
,即圓心
的坐標(biāo)為
,
圓的半徑
,故圓
的方程是
(2)若直線斜率不存在,則直線
方程是
,與圓
相離,不合題意;若直線
斜率存在,可設(shè)直線
方程是
,即
,因為直線
與圓
相切,所以有
,
解得或
.
所以直線的方程是
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運動會,對本校高一、高二兩個田徑隊中30名跳高運動員進(jìn)行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.
(1)如果從所有運動員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運動員中選取2名,用X表示所選運動員來自高一隊的人數(shù),試寫出X的分布圖,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( )
A. =(0,0),
=(1,2)B.
=(-1,2),
=(5,-2)
C. =(3,5),
=(6,10)D.
=(2,-3),
=(-2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】洛薩·科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個著名的猜想:任給一個正整數(shù),如果
是偶數(shù),就將它減半(即
);如果
是奇數(shù),則將它乘3加1(即
),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數(shù)
按照上述規(guī)則實施變換(注:1可以多次出現(xiàn))后的第九項為1,則
的所有可能取值的集合為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大家知道,莫言是中國首位獲得諾貝爾獎的文學(xué)家,國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對莫言作品的了解程度,結(jié)果如下:
閱讀過莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計該校學(xué)生閱讀莫言作品超過50篇的概率;
(Ⅱ)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對莫言作品的非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
是奇函數(shù).
(1)求,
的值;
(2)證明:是區(qū)間
上的減函數(shù);
(3)若,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,(i)求曲線
在點
處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com