【題目】已知橢圓的離心率
,橢圓
上的點(diǎn)到其左焦點(diǎn)
的最大距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓左焦點(diǎn)
的直線
與橢圓
交于
兩點(diǎn),直線
,過點(diǎn)
作直線
的垂線與直線
交于點(diǎn)
,求
的最小值和此時(shí)直線
的方程.
【答案】(1);(2)最小值為
,此時(shí)直線
的方程為
.
【解析】
(1)根據(jù)橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為
,得到
,再由
,聯(lián)立求解即可.
(2)①當(dāng)直線的斜率不存在時(shí),直線
的方程為
,可分別求導(dǎo)T,A,B的坐標(biāo),然后利用兩點(diǎn)間距離公式求解;②當(dāng)直線
的斜率存在時(shí),設(shè)直線
的方程為
,由
,利用弦長公式求得
,再由
,求得交點(diǎn)
,從而得到
,代入
求解.
(1)由題可知,又橢圓
上的點(diǎn)到其左焦點(diǎn)的最大距離為
,
所以,
所以,
,
∴,
所以橢圓的方程為
.
(2)①當(dāng)直線的斜率不存在時(shí),直線
的方程為
,則
,
所以,
,此時(shí)
;
②當(dāng)直線的斜率存在時(shí),設(shè)直線
的方程為
,
,
由,
得,
由韋達(dá)定理得,
,
則,
聯(lián)立,可得
,
所以
所以.
因?yàn)?/span>所以等號不成立.
綜上,的最小值為
,此時(shí)直線
的方程為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學(xué)發(fā)展和世界糧食供給做出了杰出貢獻(xiàn);某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是( )
A.該地水稻的平均株高為100cm
B.該地水稻株高的方差為10
C.隨機(jī)測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大
D.隨機(jī)測量一株水稻,其株高在(80,90)和在(100,110)(單位:cm)的概率一樣大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北七市州高三5月23日聯(lián)考后,從全體考生中隨機(jī)抽取44名,獲取他們本次考試的數(shù)學(xué)成績和物理成績
,繪制成如圖散點(diǎn)圖:
根據(jù)散點(diǎn)圖可以看出與
之間有線性相關(guān)關(guān)系,但圖中有兩個(gè)異常點(diǎn)
.經(jīng)調(diào)查得知,
考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,
考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計(jì)的值:
其中
,
分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,
,2,…,42,
與
的相關(guān)系數(shù)
.
(1)若不剔除兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時(shí)
與
的相關(guān)系數(shù)為
.試判斷
與
的大小關(guān)系,并說明理由;
(2)求關(guān)于
的線性回歸方程,并估計(jì)如果
考生參加了這次物理考試(已知
考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?
(3)從概率統(tǒng)計(jì)規(guī)律看,本次考試七市州的物理成績服從正態(tài)分布
,以剔除后的物理成績作為樣本,用樣本平均數(shù)
作為
的估計(jì)值,用樣本方差
作為
的估計(jì)值.試求七市州共50000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)
的數(shù)學(xué)期望.
附:①回歸方程中:
②若,則
③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)
到準(zhǔn)線
的距離為2,直線
與拋物線交于不同的兩點(diǎn)
,
.
(1)求拋物線的方程;
(2)是否存在與的取值無關(guān)的定點(diǎn)
,使得直線
,
的斜率之和恒為定值?若存在,求出所有點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共l4分)
已知函數(shù)f(x)=x +
, h(x)=
.
(I)設(shè)函數(shù)F(x)=f(x)一h(x),求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè)a∈R,解關(guān)于x的方程log4[]=1og2h(a-x)一log2h (4-x);
(Ⅲ)試比較與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“九兒問甲歌”就是其中一首:“一個(gè)公公九個(gè)兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.”這首歌決的大意是:“一位老公公有九個(gè)兒子,九個(gè)兒子從大到小排列,相鄰兩人的年齡差三歲,并且兒子們的年齡之和為207歲,請問大兒子多少歲,其他幾個(gè)兒子年齡如何推算.”在這個(gè)問題中,記這位公公的第個(gè)兒子的年齡為
,則
( )
A.17B.29C.23D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:
,曲線C2的參數(shù)方程為:
,點(diǎn)N的極坐標(biāo)為
.
(Ⅰ)若M是曲線C1上的動點(diǎn),求M到定點(diǎn)N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個(gè)不同交點(diǎn),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四錐中,
,底面ABCD為形,
,點(diǎn)E為的AD中點(diǎn).
(1)證明:平面平面PBE;
(2)若,二面角
的余弦值為
,且
,求PE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>R的奇函數(shù),滿足
,則下列敘述正確的為( )
①存在實(shí)數(shù)k,使關(guān)于x的方程有7個(gè)不相等的實(shí)數(shù)根
②當(dāng)時(shí),恒有
③若當(dāng)時(shí),
的最小值為1,則
④若關(guān)于的方程
和
的所有實(shí)數(shù)根之和為零,則
A.①②③B.①③C.②④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com