日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 三角形ABC的兩頂點(diǎn)A(-2,0),B(0,-2),第三頂點(diǎn)C在拋物線y=x2+1上,求三角形ABC的重心G的軌跡.
          設(shè)記G(x,y),C(x0,y0),
          由重心坐標(biāo)公式得
          x=
          -2+x0
          3
          ,y=
          -2+y0
          3

          所以x0=3x+2,y0=3y+2
          因?yàn)镃(x0,y0),
          在y=x2+1上
          所3y+2=(3x+2)2+1整理得y=3(x+
          2
          3
          2-
          1
          3

          所以G點(diǎn)的軌跡為開口向上的拋物線.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
          (i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
          (ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),離心率為
          2
          2

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,過右焦點(diǎn)F且斜率為
          2
          的直線l交橢圓E于兩點(diǎn)A,B,若以原點(diǎn)為圓心,
          6
          3
          為半徑的圓與直線l相切
          (1)求焦點(diǎn)F的坐標(biāo);
          (2)以O(shè)A,OB為鄰邊的平行四邊形OACB中,頂點(diǎn)C也在橢圓E上,求橢圓E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)x,y∈R,
          i
          ,
          j
          為直角坐標(biāo)平面內(nèi)x軸y軸正方向上的單位向量,若
          a
          =x
          i
          +(y+2)
          j
          ,
          b
          =x
          i
          +(y-2)
          j
          ,且|
          a
          |+|
          b
          |=8
          (Ⅰ)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
          (Ⅱ)設(shè)曲線C上兩點(diǎn)AB,滿足(1)直線AB過點(diǎn)(0,3),(2)若
          OP
          =
          OA
          +
          OB
          ,則OAPB為矩形,試求AB方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          附加題:已知半橢圓
          x2
          a2
          +
          y2
          b2
          =1(x≥0)
          與半橢圓
          y2
          b2
          +
          x2
          c2
          =1(x≤0)
          組成的曲線稱為“果圓”,其中a2=b2+c2,a>b>c>0,F(xiàn)0、F1、F2是對(duì)應(yīng)的焦點(diǎn).
          (1)(文)若三角形F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程.
          (2)(理)當(dāng)|A1A2|>|B1B2|時(shí),求
          b
          a
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線C1:x2=2py(p>0)的焦點(diǎn)為F,橢圓C2
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率e=
          3
          2
          ,C1與C2在第一象限的交點(diǎn)為P(
          3
          ,
          1
          2

          (1)求拋物線C1及橢圓C2的方程;
          (2)已知直線l:y=kx+t(k≠0,t>0)與橢圓C2交于不同兩點(diǎn)A、B,點(diǎn)M滿足
          AM
          +
          BM
          =
          0
          ,直線FM的斜率為k1,試證明k•k1
          -1
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知兩條拋物線y1=x2+2mx+4,y2=x2+mx-m中至少有一條與x軸有公共點(diǎn),則實(shí)數(shù)m的取值范圍是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在橢圓
          x2
          16
          +
          y2
          4
          =1內(nèi),通過點(diǎn)M(1,1),且被這點(diǎn)平分的弦所在的直線方程為( 。
          A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

          查看答案和解析>>

          同步練習(xí)冊(cè)答案