日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A則實(shí)數(shù)b的取值范圍是(
          A.b≠0
          B.b<0或b≥4
          C.0≤b<4
          D.b≤4或b≥4

          【答案】B
          【解析】解:由題意可得,A是函數(shù)f(x)的零點(diǎn)構(gòu)成的集合. 由f(f(x))=0,可得 (x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0.
          故函數(shù)f(x)=x2+bx,故由f(x)=0可得 x=0,或x=﹣b,故A={0,﹣b}.
          方程f(f(x))=0,即 (x2+bx)2+b(x2+bx)=0,即 (x2+bx)(x2+bx+b)=0,
          解得x=0,或x=﹣b,或 x=
          由于存在x0∈B,x0A,故b2﹣4b≥0,解得b≤0,或b≥4.
          由于當(dāng)b=0時(shí),不滿足集合中元素的互異性,故舍去.
          即實(shí)數(shù)b的取值范圍為{b|b<0或b≥4 },
          故選B.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用元素與集合關(guān)系的判斷和函數(shù)的零點(diǎn)的相關(guān)知識(shí)可以得到問題的答案,需要掌握對(duì)象與集合的關(guān)系是,或者,兩者必居其一;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= ,若f(0)是f(x)的最小值,則a的取值范圍為(
          A.[﹣1,2]
          B.[﹣1,0]
          C.[1,2]
          D.[0,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=﹣2x , g(x)=lg(ax2﹣2x+1),若對(duì)任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為(
          A.(﹣1,0)
          B.(0,1)
          C.(﹣∞,1]
          D.[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)設(shè)函數(shù)h(x)=g(x)﹣f(x),求函數(shù)h(x)在區(qū)間[2,4]上的值域;
          (2)定義min(p,q)表示p,q中較小者,設(shè)函數(shù)H(x)=min{f(x),g(x)}(x>0), ①求函數(shù)H(x)的單調(diào)區(qū)間及最值;
          ②若關(guān)于x的方程H(x)=k有兩個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列滿足, ,( N*).

          (Ⅰ)寫出的值;

          (Ⅱ)設(shè),求的通項(xiàng)公式;

          (Ⅲ)記數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.

          Ⅰ)求橢圓的方程;

          直線交橢圓兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          當(dāng)a0時(shí),求曲線fx)在x 1處的切線方程;

          設(shè)函數(shù),求函數(shù)hx)的極值;

          [1,e]e2718 28…)上存在一點(diǎn)x0,使得成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
          (1)求證:PA∥平面BDE;
          (2)求證:PB⊥平面DEF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的五面體中,面為直角梯形, ,平面 平面, , 是邊長(zhǎng)為2的正三角形.

          (1)證明: ;

          (2)證明: 平面

          查看答案和解析>>

          同步練習(xí)冊(cè)答案