【題目】如圖,四棱錐中,底面
是邊長(zhǎng)為4的正方形,側(cè)面
為正三角形且二面角
為
.
(Ⅰ)設(shè)側(cè)面與
的交線為
,求證:
;
(Ⅱ)設(shè)底邊與側(cè)面
所成角的為
,求
的值.
【答案】(Ⅰ)見(jiàn)解析(Ⅱ).
【解析】
(Ⅰ)先證明平面
,再根據(jù)線面平行的性質(zhì)定理即可證.
(Ⅱ) 取的中點(diǎn)
、
的中點(diǎn)
,由二面角的定義可知
.作
,以
為原點(diǎn),
、
為
、
軸,建立空間直角坐標(biāo)系,求出平面
的法向量
,則由
可求.
證明:(Ⅰ)因?yàn)?/span>,所以
平面
.
又因?yàn)閭?cè)面與
的交線為
,所以m∥BC.
(Ⅱ)解:取的中點(diǎn)
、
的中點(diǎn)
,連接
、
則,
.所以
是側(cè)面
與底面所成二面角的平面角.
從而.作
于
,則
底面
.
因?yàn)?/span>,
.所以
,
.
以為原點(diǎn),
、
為
、
軸.如圖建立空間直角坐標(biāo)系.
則,
,
.
設(shè)是平面
的法向量,則
取,得
.則
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為(
為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)探究直線l與曲線C2的位置關(guān)系,并說(shuō)明理由;
(2)若曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C1、C2分別交于M、N兩點(diǎn),求|OM|2|ON|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某班一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問(wèn)題.
(Ⅰ)求全班人數(shù)及分?jǐn)?shù)在之間的頻率;
(Ⅱ)現(xiàn)從分?jǐn)?shù)在之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在
的份數(shù)為
,求
的分布列和數(shù)學(xué)望期.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,則實(shí)數(shù)a的取值范圍是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,的焦點(diǎn)為
,過(guò)點(diǎn)
的直線
的斜率為
,與拋物線
交于
,
兩點(diǎn),拋物線在點(diǎn)
,
處的切線分別為
,
,兩條切線的交點(diǎn)為
.
(1)證明:;
(2)若的外接圓
與拋物線
有四個(gè)不同的交點(diǎn),求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是圓
:
上的一動(dòng)點(diǎn),點(diǎn)
,點(diǎn)
在線段
上,且滿足
.
(1)求點(diǎn)的軌跡
的方程;
(2)設(shè)曲線與
軸的正半軸,
軸的正半軸的交點(diǎn)分別為點(diǎn)
,
,斜率為
的動(dòng)直線
交曲線
于
、
兩點(diǎn),其中點(diǎn)
在第一象限,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為
,離心率
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)M ,使得恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1直角梯形,
,
,
,
,E為
的中點(diǎn),沿
將梯形
折起(如圖2),使平面
平面
.
(1)證明:平面
;
(2)在線段上是否存在點(diǎn)F,使得平面
與平面
所成的銳二面角的余弦值為
,若存在,求出點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com