【題目】已知橢圓C: 的右焦點為
,離心率
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.
【答案】(1);
(2)x軸上存在點,使得
恒成立,理由見解析.
【解析】
(1)根據(jù)焦點坐標(biāo)、離心率結(jié)合列式,求得
的值,從而求得橢圓的標(biāo)準(zhǔn)方程.
(2)假設(shè)軸上存在
,使
.當(dāng)直線
斜率為
時,求得
兩點的坐標(biāo),利用
列方程,解方程求得
的值.當(dāng)直線
斜率不存在時,求得
兩點的坐標(biāo),利用
列方程,解方程求得
的值.由此判斷
,由此求得
點坐標(biāo),再證當(dāng)直線
斜率存在時,
即可.當(dāng)直線
斜率存在時,設(shè)出直線
的方程,聯(lián)立直線方程和橢圓方程,寫出韋達(dá)定理,計算得
,由此求得符合題意的
點的坐標(biāo).
(1)∵ ,
, ∴
,
∴ .
∴ 橢圓方程為.
(2)假設(shè)x軸上存在點M(m,0),使得,
①當(dāng)直線l的斜率為0時, ,
,
則, 解得
.
②當(dāng)直線l的斜率不存在時, ,
,
則,
解得 ,
.
由①②可得.
下面證明時,
恒成立.
直線l斜率存在時,設(shè)直線方程為.
由 消y整理得:
,
,
,
.
.
綜上,軸上存在點
,使得
恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體 ABCD 中,P,Q分別是棱 AB,CD的中點,E,F(xiàn)分別是直線AB,CD上的動點,M 是EF 的中點,則能使點 M 的軌跡是圓的條件是( )
A. PE+QF=2B. PEQF=2
C. PE=2QFD. PE2+QF2=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程,這兩年學(xué)習(xí)先修課程的學(xué)生都參加了高校的自主招生考試(滿分100分),結(jié)果如下表所示:
分?jǐn)?shù) | |||||
人數(shù) | 25 | 50 | 100 | 50 | 25 |
參加自主招生獲得通過的概率 | 0.9 | 0.8 | 0.6 | 0.4 | 0.3 |
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗?zāi)芊裨诜稿e的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計 | 150 |
(Ⅱ)已知今年全校有150名學(xué)生報名學(xué)習(xí)大學(xué)選項課程,并都參加了高校的自主招生考試,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.
(ⅰ)在今年參與大學(xué)先修課程學(xué)習(xí)的學(xué)生中任取一人,求他獲得高校自主招生通過的概率;
(ⅱ)某班有4名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),設(shè)獲得高校自主招生通過的人數(shù)為,求
的分布列,試估計今年全校參加大學(xué)先修課程學(xué)習(xí)的學(xué)生獲得高校自主招生通過的人數(shù).
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,且
,
.
(1)證明:平面
;
(2)在線段上,是否存在一點
,使得二面角
的大小為
?如果存在,求
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知是直線
上的動點,點
的坐標(biāo)是
,過
的直線
與
垂直,并且
與線段
的垂直平分線相交于點
.
(1)求點的軌跡
的方程;
(2)設(shè)曲線上的動點
關(guān)于
軸的對稱點為
,點
的坐標(biāo)為
,直線
與曲線
的另一個交點為
(
與
不重合),是否存在一個定點
,使得
三點共線?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:區(qū)間,
,
,
的長度均為
,若不等式
的解集是互不相交區(qū)間的并集,設(shè)該不等式的解集中所有區(qū)間的長度之和為
,則( )
A. 當(dāng)時,
B. 當(dāng)
時,
C. 當(dāng)時,
D. 當(dāng)
時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(1)當(dāng)時,求
的單調(diào)區(qū)間;
(2)設(shè),若
,
為函數(shù)
的兩個不同極值點,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,
,
的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).
高校 | 相關(guān)人員 | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(1)求,
;
(2)若從高校,
抽取的人中選2人做專題發(fā)言,求這2人都來自高校
的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com