日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 為橢圓上任意一點(diǎn),為左右焦點(diǎn).如圖所示:

          (1)若的中點(diǎn)為,求證
          (2)若,求的值.

          (1))證明:在 中,為中位線

          (2)

          解析試題分析:(1)由橢圓定義知,則,由條件知點(diǎn)、分別是的中點(diǎn),所以的中位線,則,從而命題得證;(2)根據(jù)橢圓定義,在中有,又由條件,從這些信息中可得到提示,應(yīng)從余弦定理入手,考慮到,所以需將兩邊平方,得,將其代入余弦定理,得到關(guān)于的方程,從而可得解.
          試題解析:(1)證明:在 中,為中位線
                     5分
          (2) ,
          中,
          , 
                                                   12分
          考點(diǎn):1.橢圓定義;2.余弦定理.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓)的右焦點(diǎn)為,離心率為.
          (Ⅰ)若,求橢圓的方程;
          (Ⅱ)設(shè)直線與橢圓相交于兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓.

          (1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
          ①證明直線軸交點(diǎn)的位置與無關(guān);
          ②若∆面積是∆面積的5倍,求的值;
          (2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)為拋物線C上的一點(diǎn),且的外接圓圓心到準(zhǔn)線的距離為

          (I)求拋物線C的方程;
          (II)若圓F的方程為,過點(diǎn)P作圓F的2條切線分別交軸于點(diǎn),求面積的最小值時(shí)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
          (1) 求橢圓的離心率的取值范圍。
          (2)當(dāng)離心率最小且時(shí),求橢圓的方程。
          (3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),,均在拋物線上.

          (1)求該拋物線方程;
          (2)若AB的中點(diǎn)坐標(biāo)為,求直線AB方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)已知定點(diǎn)、,動(dòng)點(diǎn)N滿足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.

          (2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

          (。┰O(shè)直線的斜率分別為,求證:為定值;
          (ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過定點(diǎn)?請(qǐng)證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn).
          (1)求拋物線的標(biāo)準(zhǔn)方程;
          (2)若拋物線與直線交于兩點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知圓直線與圓相切,且交橢圓兩點(diǎn),是橢圓的半焦距,,
          (Ⅰ)求的值;
          (Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
          (Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案